Effects of Leaf Removal Timing and Extent on Crop Yield, Disease Incidence, and Primary Chemistry in Chardonnay

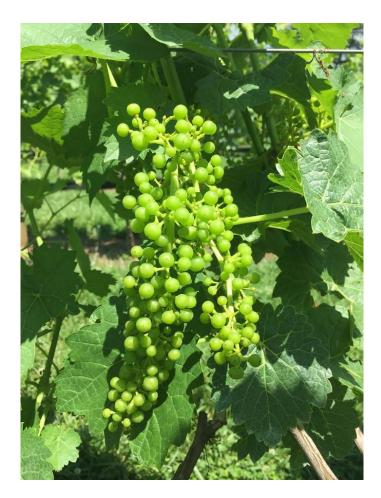
Annie Vogel, Clark MacAllister, Nathan Eason, Rachael White, and Cain Hickey

Chardonnay is one of the most widely grown cultivars in the world

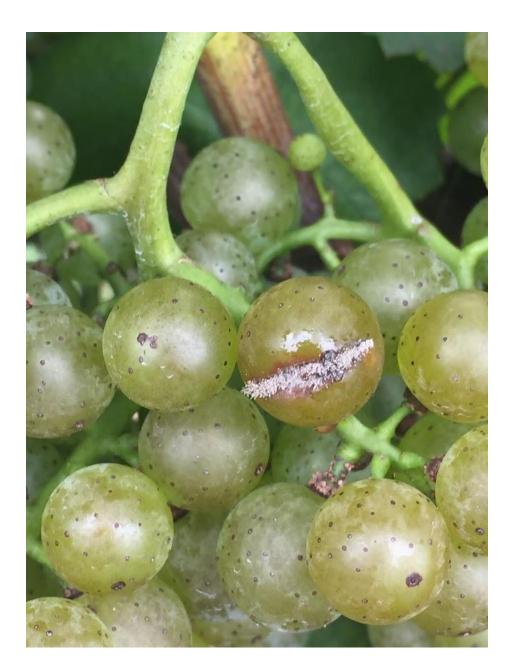
Goals

• Remove four and six basal leaves from each shoot either pre-bloom, post-fruit set, or in combination of both.

- Maintain or improve crop production and wine quality potential
- Decrease disease incidence


Treatments

- No leaf removal (NO)
- Pre-bloom removal of 4 leaves (PB-4)
- Pre-bloom removal of 6 leaves (PB-6)
- Post-fruit set removal of 4 leaves (PFS-4)
- Post-fruit set removal of 6 leaves (PFS-6)
- Pre-bloom removal of 2 leaves and post-fruit set removal of 2 leaves (PB2/PFS2)
- Pre-bloom removal of 3 leaves and post-fruit set removal of 3 leaves (PB3/PFS3)


Pre-bloom vs Post-fruit set

Hypotheses

- Leaf removal will reduce acidity and increase or maintain Brix.
- Leaf removal will reduce disease incidence and severity
- Pre-bloom leaf removal will reduce crop yield because of decreased fruit set.

Botrytis and sour rot - 2017

2017				
Treatment	Botrytis Incidence	Botrytis Severity	Sour rot Incidence	Sour rot Severity
NO	68.0	8.97 a	56.8	6.86
PB-4	60.8	4.70 b	56.8	4.26
PB-6	61.6	5.06 ab	61.6	3.89
PFS-4	61.6	4.70 b	60.0	3.41
PFS-6	51.2	2.02 b	48.8	2.20
PB2/PFS2	58.4	3.90 b	58.4	2.09
PB3/PFS3	62.4	3.70 b	56.8	3.16

Botrytis and sour rot - 2018

2018				
Treatment	Botrytis	Botrytis	Sour rot	Sour rot
	Incidence	Severity	Incidence	Severity
NO	63.2a	9.60a	73.6a	11.3a
PB-4	25.6bc	1.74ab	47.2ab	2.12b
PB-6	18.4bc	1.05ab	48.0ab	2.67b
PFS-4	32.0b	2.49ab	48.0ab	2.47b
PFS-6	12.8c	0.58b	27.2b	0.95b
PB2/PFS2	32.0b	3.11ab	47.2ab	3.66b
PB3/PFS3	15.2bc	1.63ab	36.0b	2.34b

Crop yield components - 2017

Treatment	Berry number per cluster	Cluster weight (g)	Crop weight (US Ton/acre)
NO	94.5 bc	184.7 bc	3.87 ab
PB-4	96.1 bc	198.1 bc	3.73 ab
PB-6	84.3 c	169.9 c	3.22 b
PFS-4	117.9 a	241.2 a	4.92 a
PFS-6	115.2 a	220.9 ab	4.14 ab
PB2/PFS2	110.3 ab	221.8 ab	4.18 ab
PB3/PFS3	102.6 ab	202.3 bc	4.09 ab

Crop yield components - 2018

Treatment	Berry number per cluster	Cluster weight (g)	Crop weight (US Ton/acre)
NO	87.8 ab	153.5 ab	4.70 ab
PB-4	92.1 ab	159.2 ab	5.29 ab
PB-6	74.0 b	123.0 b	3.44 b
PFS-4	111.2 a	179.9 a	6.15 a
PFS-6	105.5 a	165.4 a	5.41 ab
PB2/PFS2	98.3 ab	160.8 ab	5.38 ab
PB3/PFS3	94.9 ab	149.5 ab	5.11 ab

Primary fruit chemistry - 2017

Treatment	Brix	Titratable Acidity	рH	Brix:TA
NO	17.8 b	10.1 a	3.27 b	1.77 c
PB-4	18.5 a	9.30 b	3.30 ab	2.00 b
PB-6	18.9 a	8.91 bc	3.33 ab	2.13 ab
PFS-4	18.4 ab	9.02 bc	3.31 ab	2.05 b
PFS-6	18.7 a	8.50 c	3.33 ab	2.21 ab
PB2/PFS2	18.6 a	8.77 bc	3.31 ab	2.13 ab
PB3/PFS3	18.8 a	8.26 c	3.35 a	2.28 a

Primary fruit chemistry - 2018

Treatment	Brix	Titratable Acidity	pН	Brix:TA
NO	20.4 b	8.98 a	3.36 b	2.28 b
PB-4	21.4 a	8.38 ab	3.42 ab	2.57 a
PB-6	21.3 a	8.26 ab	3.44 a	2.59 a
PFS-4	21.2 a	8.33 ab	3.41 ab	2.55 a
PFS-6	21.3 a	8.19 b	3.42 ab	2.60 a
PB2/PFS2	21.5 a	8.14 b	3.41 ab	2.65 a
PB3/PFS3	21.4 a	7.86 b	3.45 a	2.73 a

Discussion

- In humid climates, leaf removal can improve airflow and spray penetration leading to reduction in disease
- Leaf removal will not negatively impact fruit quality and can improve or maintain Brix and Titratable Acidity (TA)
- Post-fruit set leaf removal results in higher crop yields than pre-bloom leaf removal.

Take Home

- In some instances, fruit zone leaf removal before bloom causes reduced fruit set
 - And subsequently reduced crop yield
- Removal of 4-6 leaves post-fruit set is the sweet spot for Chardonnay that will help to reduce disease, improve primary chemistry, and maintain crop yields
- REMOVE LEAVES

Continuing Research

- Mechanical leaf removal
- Different Cultivars
- Removing portions of leaves to determine cause of reduced fruit set in some cultivars.
- Analyze aromatics in Chardonnay and other cultivars

https://pellenc.com/agri/produits/leaf-remover/?lang=en

Acknowledgements

Dr. Cain Hickey

US

Three Sisters Vineyards

All of those that helped us last season and those that continue to help us

- ✤ Nathan Eason
- Clark MacAllister
- ✤ Rachael White
- ✤ Alex Cameli, Zac Bennett, and Emily Currens

Questions?

