BUD DENSITY AND TRELLIS STRUCTURE EFFECTS ON CHAMBOURCIN

Rachael White, Nathan Eason, Clark MacAllister, Annie Vogel, and Cain Hickey

OVERVIEW

- 1) Goals of the Project
- 2) Description of Treatments
- 3) Logic Behind the Retrofit
- 4) Chambourcin
- 5) Preliminary Results
- **6)** Conclusion

GOALS

- Retrofit a low bilateral cordon VSP system:
 - Trellising
 - Pruning
- 2) Increase Crop Production
- 3) Maintain or Improve Wine Quality

TREATMENTS

Trellising

 Divided Vertical Shoot Positioned (DVSP)

Tight (VSP)

Pruning

- All were spur pruned
 - 4 buds/foot of row
 - 6 buds/foot of row
 - 8 buds/foot of row

PRUNING TREATMENTS

Low Density (Pruned to 4 buds/foot) Actually ~4 shoots/foot Medium Density (Pruned to 6 buds/foot) Actually ~5 shoots/foot High Density (Pruned to 8 buds/foot) Actually ~6 shoots/foot

QUICK VIDEO OVERVIEW OF PROJECT

https://www.youtube.com/watch?v=VS 895DyRCU

CHAMBOURCIN

Relatively loose clusters, large berries, with thick skins

Tends to have less rot even at higher cluster densities

Tends to have a heavier crop with a little higher acidity compared to V. vinifera cultivars

Important East Coast cultivar

HYPOTHESIS

DVSP will increase Brix in the harvested fruit

Leaving more buds per foot of row will increase crop yield • Fruit maturity will be advanced in DVSP compared to VSP

PRELIMINARY DATA: FRUIT ZONE SUNLIGHT Exposure

	2018			
Treatment	Leaf Area Index	Effective Leaf Area Index		
Pruning				
High	1.75	1.44		
Medium	1.64	1.38		
Low	1.65	1.35		
Trellising				
DVSP	2.07a	1.90a		
VSP	1.29b	0.88b		

PRELIMINARY DATA: MID CANOPY PQA

Leaf Layer Number – Number of leaves contacted in the average PQA reading

Leaf Exposure Layer – Number of shading layers between leaves and the nearest boundary

	2018			
Treatment	Leaf Layer Number	Leaf Exposure Layer		
Pruning				
High	2.64a	0.30a		
Medium	2.42b	0.25ab		
Low	2.21c	0.21b		
Trellising				
DVSP	2.04b	0.19b		
VSP	2.81a	0.32a		

PRIMARY FRUIT COMPOSITION

	2018						
Treatment	Soluble Solids (°Brix)	рН	TA (g/L)				
Pruning							
High	20.23	3.75	4.86				
Medium	20.15	3.72	4.97				
Low	20.41	3.73	4.68				
Trellising							
DVSP	20.18	3.71b 4.95a					
VSP	20.34	3.76a	4.72b				

PRELIMINARY YIELD DATA

2018							
Treatment	Crop yield (tons/acre)	Cluster number (per vine)	Cluster weight (g)	Average Berry Weight (g)	Berry # /cluster	Crop Load	
Pruning							
High	7.91	51.8a	170.7b	2.57	66.22b	9.21	
Medium	7.79	49.8a	175.6b	2.58	68.31b	8.66	
Low	7.07	39.6b	200.5a	2.58	77.58a	8.40	
Trellising							
DVSP	8.32a	47.9	196.7a	2.61	75.46a	9.74a	
VSP	6.85b	46.2	167.9b	2.55	65.95b	7.76b	

CONCLUSIONS

DVSP increased the effective leaf area index.

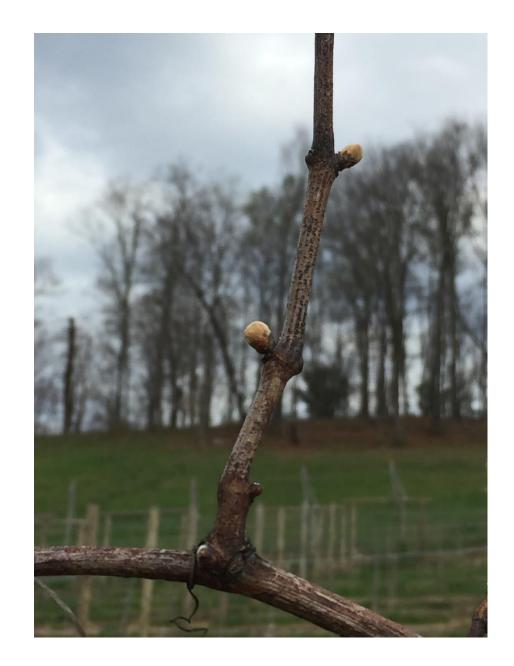
Could help explain the increase in crop

DVSP increased the amount of harvested fruit by an average of 21%

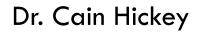
 No significant increase in harvested fruits in the different pruning densities

DVSP increased the amount of titratable acidity

Increased in berries per cluster increasing shading?


TO BE CONTINUED...

Differential sampling to determine cause of TA increase


Perennial sustainability of the vineyard

Investigation into why the increase in buds did not result in a significant increase in yield

 Fruit set may be limited by the source during bloom

ACKNOWLEDGEMENTS

CeNita Vineyard

All of those that helped us last season and those that continue to help us

- Nathan Eason
- Clark MacAllister
- Annie Vogel
- Alex Cameli, Zac Bennett, and Emily Currens

UNIVERSITY OF GEORGIA

EXTENSION

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

THANK YOU!

Questions?

