Mid- to late-season vineyard insect management

Brett Blaauw
Department of Entomology
University of Georgia

Mid-Season Grape Workshop
6-68-2017
Outline

Key grape pests to target

– Japanese beetles
– Leafhoppers/sharpshooters
– Grape berry moth
– Grape root borer
– Mites
– Spotted wing drosophila
Japanese beetles

- Adults are shiny green and copper-colored
 - Eggs are laid in the soil
 - Overwinter as white, C-shaped grubs in soil
- Potential pest of grape during the summer
 - Adults skeletonize leaves
 - Adults are gregarious; present in great numbers on only a few vines
 - Feeding is concentrated near top of canopy
 - Intensive feeding after veraison may impact fruit quality and yield
Managing Japanese beetles

• Remove attractive non-crop host plants
 – Preferred plants
 • **Grape**, linden, Japanese maple, birch, pin oak, horse chestnut, apple, plum, cherry, rose, mountain ash, elm, Virginia creeper, crape myrtle
 – Rarely attacked plants
 • Red maple, tuliptree, magnolias, red mulberry, forsythia, ash, privet, lilac, spruce, hydrangea, yew

• Grow less attractive grape cultivars/species
 – Juice grape < hybrids < vinifera

• Milky spore **may** provide as long-term control
Chemical management of Japanese beetles

- Scout mid-June, early July
 - Look for beetles/damage
 - Do not use monitoring traps!
- Rotate chemicals
 - Note Assail is systemic
- Abundance is often higher at vineyard borders
 - Targeted management may minimize cost

<table>
<thead>
<tr>
<th>IRAC</th>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Carbaryl</td>
<td>Sevin XLR</td>
<td>+++</td>
</tr>
<tr>
<td>1B</td>
<td>Phosmet</td>
<td>Imidan 70W</td>
<td>+++</td>
</tr>
<tr>
<td>1B</td>
<td>Malathion</td>
<td>Malathion 8F</td>
<td>++</td>
</tr>
<tr>
<td>22A</td>
<td>Indoxacarb</td>
<td>Avaunt 30DG</td>
<td>+++</td>
</tr>
<tr>
<td>3</td>
<td>Zeta-cypermethrin</td>
<td>Mustang Maxx</td>
<td>+++</td>
</tr>
<tr>
<td>4A</td>
<td>Acetamiprid</td>
<td>Assail 70WP</td>
<td>+++</td>
</tr>
<tr>
<td>UN</td>
<td>Azadirachtin</td>
<td>Neemix</td>
<td>+++</td>
</tr>
</tbody>
</table>
Leafhoppers / sharpshooters (for Pierce’s disease)

• Small insects with piercing-sucking mouthparts
 – Feed upon xylem or phloem tissue
 – Often cryptic in coloration – hard to visually monitor
 – Adults are expert jumpers and are strong flyers

• Potential to vector Pierce's disease of grapevines
 – Several culprits, including glassy-winged sharpshooter, blue sharpshooter, and versute sharpshooter
 – The causal agent is the bacterium Xylella fastidiosa

• Symptoms of Pierce’s disease include:
 – Yellowing/reddening of leaves leading to drying along margins
 – Fruit clusters shrivel
 – Dried leaves fall leaving the petiole attached to the cane
 – Wood on new canes matures irregularly
 – Not all symptoms are necessarily present in infected vines
Managing leafhoppers / sharpshooters

- Remove alternative hosts from vineyard
 - Bermudagrass, perennial rye, fescue grass, blackberry, willow, and elderberry

- Monitor using yellow sticky cards in canopy

- Cover sprays to suppress populations
 - Rotate chemical classes

<table>
<thead>
<tr>
<th>IRAC</th>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>carbaryl</td>
<td>Sevin 80S</td>
<td>++</td>
</tr>
<tr>
<td>1B</td>
<td>malathion</td>
<td>Malathion 8F</td>
<td>++</td>
</tr>
<tr>
<td>3A</td>
<td>bifenthrin</td>
<td>Brigade 10 WSB</td>
<td>++</td>
</tr>
<tr>
<td>3A</td>
<td>cyfluthrin</td>
<td>Baythroid</td>
<td>++</td>
</tr>
<tr>
<td>3A</td>
<td>fenpropathrin</td>
<td>Danitol 2.4 EC</td>
<td>++</td>
</tr>
<tr>
<td>4A</td>
<td>acetamiprid</td>
<td>Assail 30SG</td>
<td>+++</td>
</tr>
<tr>
<td>4A</td>
<td>clothianidin</td>
<td>Clutch 50WDG</td>
<td>+++</td>
</tr>
<tr>
<td>4A</td>
<td>dinotefuran</td>
<td>Scorpion 35 SL</td>
<td>+++</td>
</tr>
<tr>
<td>4A</td>
<td>imidacloprid</td>
<td>Admire Pro</td>
<td>+++</td>
</tr>
</tbody>
</table>
Grape berry moth

- Adults moths have irregular brown and gray coloring
- Overwinters as pupae in grayish silken cocoons in leaf litter
- The female sex pheromone available for monitoring purposes
 - A prebloom generation may exist in some regions
 - A second generation begins flying near bloom time
 - Potentially 4 generations
- Females lay an average of 20 eggs
 - Singly on grape stems, blossom clusters, or berries
 - Larvae are cream color at first, turning gray-green and eventually purple when mature, 3/8 in long
- Economic damage is primarily to the berries
 - Larvae enter berries, creating tunnels
 - Leave silken strands, resulting in webbed clusters
Grape berry moth management

- Begin monitoring early in the season
 - Target high-risk areas
 - Pheromone traps to detect males
 - 3 traps per site

- After first capture, start accumulating DD (base 50°F)

- Check fruit around 400-700 DD (May)
 - Treat perimeter vines if damage is observed

- Monitor again at
 - 1,200 - 1,600 DD (mid-June)
 - 2,400 - 2,700 DD (early-Aug.)
 - Treat vineyard

<table>
<thead>
<tr>
<th>IRAC</th>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>Clothianidin</td>
<td>Belay</td>
<td>++</td>
</tr>
<tr>
<td>4A</td>
<td>Clothianidin</td>
<td>Clutch 50WDG</td>
<td>+++</td>
</tr>
<tr>
<td>3A</td>
<td>Fenpropathrin</td>
<td>Danitol 2.4 EC</td>
<td>++</td>
</tr>
<tr>
<td>22</td>
<td>Indoxacarb</td>
<td>Avaunt 30DG</td>
<td>+++</td>
</tr>
<tr>
<td>18</td>
<td>Methoxyfenozide</td>
<td>Intrepid 2F</td>
<td>++++</td>
</tr>
<tr>
<td>1B</td>
<td>Phosmet</td>
<td>Imidan 70-W</td>
<td>+++</td>
</tr>
<tr>
<td>28</td>
<td>Rynaxypyr</td>
<td>Altacor</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>Spinetoram</td>
<td>Delegate</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>Spinosad</td>
<td>Entrust</td>
<td>+++</td>
</tr>
</tbody>
</table>
Grape root borer

• Adult moths resemble wasps
 – The forewings are dark and the hind wings are more transparent
 – Male moths are about 5/8 in and females about 3/4 inches

• Each female lays an average of 300 eggs
 – Only 1.5-2.7% survive
 – First instar larvae drop to the ground and tunnel to roots

• The life cycle takes two years to complete
 – They bore into the roots and crown below the soil surface
 – Full-grown larvae are about 1 in long, white, with brown heads
 – Adults emerge from soil in early summer (July)

• Damage reduces the productivity of the vine
 – Loss of vine vigor is often the first sign of this pest
 – Vines eventually die
Monitoring for grape root borer

• Traps baited with mating pheromone and an insecticidal strip
 – Deploy traps in June and monitor until no moths are caught
 – One trap per acre
 – Place trap along border row of vines
 – Hang from bottom trellis wire

• Peak captures signals chemical intervention
Monitoring for grape root borer

- Grape root borer
- Squash vine borer
- Red oak clearwing moth
- Yellow jacket
Managing grape root borer

• Cultural control
 – Weed management beneath vines can reduce the number of eggs laid
 – Improved air flow can increase desiccation of eggs
 – Mounding of soil at base can reduce adult emergence

• Mating disruption
 – Isomate-GRB
 – 100 dispensers per acre

• Chemical control
 – Applied when moths are first caught in traps
 – Lorsban applied to base of vine
 – Not within 35 days of harvest

<table>
<thead>
<tr>
<th>IRAC</th>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Chlorpyrifos</td>
<td>Lorsban</td>
<td>++</td>
</tr>
<tr>
<td>UN</td>
<td>Mating disruption</td>
<td>Isomate-GRB</td>
<td>++++</td>
</tr>
</tbody>
</table>
Mites

- **European red mite** (ERM), *Panonychus ulmi*,
- **Two-spotted spider mite** (TSM), *Tetranychus urticae*,
- Can be a major pest within vineyards
 - Leaves have mild chlorotic spots and become bronzed if populations are sufficiently high
 - Severe infestations may result in defoliation
 - No direct fruit injury → reduction in photosynthesis negatively affects fruit quality
 - May lead to reduced shoot growth and fruit bud in the following year
Mites

Two-spotted Spider Mite
 Adult
 Webbing

Leaf damage

European Red Mite
 Female
 Male
Monitoring for Mites

• During the dormant period:
 – Inspect vines for overwintering ERM eggs
 – Clusters of tiny (less than 1/50 inch), red spheres

• Post-bloom:
 – Assess leaves for adult ERM and TSM mites
 – Use hand lens to inspect leaves
 – Tap branch and collect mites onto white sheet of paper

• Chemical control should be considered only if ERM exceed 10 ERM and/or 5 TSM per leaf
Biological control of mites

- Insecticides and miticides can also impact beneficials (natural enemies)
 - Not all mites are bad!
 - Predators, like lady beetles, feed on mites

- Use insecticides and miticides selectively
 - When possible - avoid pesticides that are toxic to the natural enemies (e.g. pyrethroids)
 - Monitor for natural enemy populations before applying chemicals

- Encourage alternative resources, such as flowering plants
Chemical management of mites

- **Dormant**: If ERM are found, a dormant oil application may be justified at bud swell
 - Horticultural oil
 - High spray volume (100 gallons per acre)

- **Post-bloom**: apply miticides as needed before serious plant damage occurs
 - Based on thresholds
 - Necessary to rotate modes of action for miticides

<table>
<thead>
<tr>
<th>IRAC</th>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Abamectin</td>
<td>Agri-Mek 0.15EC</td>
<td>+++</td>
</tr>
<tr>
<td>23</td>
<td>Spirodiclofen</td>
<td>Envidor 2SC</td>
<td>+++</td>
</tr>
<tr>
<td>10A</td>
<td>Hexythiazox</td>
<td>Onager 11.8EC</td>
<td>++</td>
</tr>
<tr>
<td>10B</td>
<td>Etoxazole</td>
<td>Zeal WP</td>
<td>+++</td>
</tr>
<tr>
<td>12B</td>
<td>Fenbutatin oxide</td>
<td>Vendex 50WP</td>
<td>++</td>
</tr>
<tr>
<td>20D</td>
<td>Bifenazate</td>
<td>Acramite 50WS</td>
<td>++++</td>
</tr>
<tr>
<td>21A</td>
<td>Pyridaben</td>
<td>Nexter 75 WP</td>
<td>++</td>
</tr>
<tr>
<td>21A</td>
<td>Fenpyroximate</td>
<td>Portal 5EC</td>
<td>+++</td>
</tr>
<tr>
<td>25A</td>
<td>Cyflumetofen</td>
<td>Nealta 1.67WSP</td>
<td>+++</td>
</tr>
<tr>
<td>UN</td>
<td>Horticultural oil</td>
<td>Superior oil</td>
<td>++</td>
</tr>
<tr>
<td>UN</td>
<td>Horticultural oil</td>
<td>TriTek</td>
<td>++</td>
</tr>
</tbody>
</table>
Spotted Wing Drosophila

• Vinegar (fruit) fly

• Adults are 0.07-0.13 in long, have red eyes
 – Males have a characteristic black spot on the tip of each wing
 – Females have a saw-like, ovipositor

• Hosts include blackberries, blueberries, cherries, peaches, pears, plums, strawberries, raspberries, and grapes

• Lay eggs in ripening fruit
 – Can transmit sour rot
 – Larvae feed and pupate within fruit
 – Full life cycle as quick as 9 days

• Larvae may infest fruit at harvest

• Monitoring and management are crucial
Monitoring for SWD

- SWD is attracted to many volatiles
 - Including vinegar, wine, yeast, and fruit

- Early season yeast bait
 - 1 tablespoon dry yeast, 4 tablespoons white sugar, and 2 cups of water

- Late in the season bait
 - Red wine + apple cider vinegar mixture (60:40 wine:vineger)

- The solution in the trap should 1–2 inches deep and contain one drop of unscented soap

- Traps can be made from plastic containers with six to twelve 3/16-inch-diameter holes about 2/3 around

- Additionally, commercial lures and traps are available
SWD trap placement

- Deploy traps in the field 2 weeks before fruit begins to color
- Place traps on the north side of rows at fruit level
- Females may be caught first → difficult to identify without 16x magnification
- Monitor any field where you suspect SWD may be present
- SWD is more likely to be in the shady side and where humidity is highest
Checking fruit for larvae

Indicates whether sprays are effective

• Collect intact, ripening grapes
• Place fruit in a flat, dark pan or zip-lock bag
• Add a salt solution (1/4 cup salt to 4 cups water)
• Wait ~15 minutes for larvae to exit fruit
• Larvae found in recently ripened fruit are likely to be SWD
Management of SWD

- SWD attack and infest fruit as berries ripen
- Risk significantly increases when fruit reach **15 degrees Brix**
- Applying sprays before SWD is present may needlessly decimate beneficial insects
 - Monitoring is crucial → initiate sprays only if flies are captured
 - It is critical to rotate among differing modes of action
- Good canopy management is important
 - Better visual inspection of the fruit
 - Reduces cluster rots after SWD injury,
 - Better coverage of insecticides
- Practice proper sanitation → flies will re-infest fallen fruit, so waste disposal is important

<table>
<thead>
<tr>
<th>IRAC</th>
<th>Active Ingredient</th>
<th>Trade Name</th>
<th>Efficacy</th>
<th>Special Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Malathion</td>
<td>Malathion 8F</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Phosmet</td>
<td>Imidan 70WSB</td>
<td>++++</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>Fenpropathrin</td>
<td>Danitol 2.4EC</td>
<td>++++</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>Bifenthrin</td>
<td>Brigade WSB</td>
<td>++++</td>
<td>2(ee)</td>
</tr>
<tr>
<td>3A</td>
<td>Zeta-cypermethrin</td>
<td>Mustang Maxx 0.8E</td>
<td>++++</td>
<td>2(ee)</td>
</tr>
<tr>
<td>5</td>
<td>Spinetoram</td>
<td>Delegate 25W</td>
<td>++++</td>
<td>2(ee)</td>
</tr>
<tr>
<td>5</td>
<td>Spinosad</td>
<td>Entrust 2SC</td>
<td>+++</td>
<td>2(ee)</td>
</tr>
</tbody>
</table>
Smallfruits.org

Home
SRSFC Activities
Crops
Weather
IPM/Production Guides

Site Map

IPM/Production Guides

- Blueberries
 - Southeast Regional Blueberry Integrated Management Guide
 - Southeast Regional Blueberry Horticulture and Growth Regulator Guide
 - Southeast Regional Organic Blueberry Pest Management Guide
- Caneberries
 - Southeast Regional Caneberries Integrated Management Guide
 - Southeast Regional Caneberry Production Guide (PDF)
 - Southeast Regional Caneberry Production Guide (Online Version)
- Bunch Grapes
 - Southeast Regional Bunch Grape Integrated Management Guide
- Muscadines
 - Southeast Regional Muscadine Grape Integrated Management Guide
- Strawberries
 - Southeast Regional Strawberry Integrated Management Guide
 - Southeast Regional Strawberry Plasticulture Production Guide
 - Fungicide Selection for Botrytis and Anthracnose Fruit Rot Management 2017
Questions?
Contact Me

Brett Blaauw
Department of Entomology
University of Georgia
353 Biological Sciences Bldg.
Athens, GA 30602
e-mail: bblaauw@uga.edu