Management of Crown Rot Diseases in Strawberry

Natalia Peres, Joe Noling, Juliana Baggio, Nan-Yi Wang, Michelle Oliveira, Marcus Marin, and Jim Mertely

University of Florida Gulf Coast Research and Education Center

Major crown rot diseases of FL strawberries

Phytophthora crown rot

Phytophthora cactorum

UF IFAS

Colletotrichum gloeosporioides

Macrophomina phaseolina

C. acutatum causes anthracnose fruit rot but also root and crown rot

We get them all...

Diagnosis!!

Phytophthora and Colletotrichum Crown Rots

Crown rot symptoms caused by *Colletotrichum gloeosporioides or Phytophthora cactorum* also similar to charcoal rot caused by *Macrophomina phaseolina*

Phytophthora crown rot

- Caused mainly by *Phytophthora cactorum* in Florida but *P. nicotianae* also found
- ✓ Favored by similar (warm/humid) weather conditions
- Does not seem to survive over the summer in Florida (Apr to September)
- ✓ Inoculum introduced with nursery transplants

Colletotrichum crown rot

- ✓ Favored by warm & humid weather
- Colletotrichum: high incidence in local summer nurseries (in the past)
 - Production of transplants in northern states greatly reduced disease
 - Low incidence (1-5%) still observed: inoculum from other hosts (oak, wild grapes, etc..)

Integrated approach for Phytophthora and Colletotrichum Crown Rot management

✓ Correct diagnosis***

✓ Cultivar selection**

Disease	Festival	Radiance	Winterstar	FL-127	FL Beauty	Brillance
Colletotrichum	<mark>S</mark>	<mark>S</mark>	MS	MR	MS	MR
crown rot	(60%)	(50%)	(30%)	(20%)	(30%)	
Phytophthora	R	HS	<mark>S</mark>	<mark>S</mark>	MR	S
crown rot	(5%)	(60%)	(50%)	(50%)	(20%)	

✓ Healthy transplants

- ✓ Nurseries in cooler, non-favorable areas
- ✓ Heat treatment (nurseries)
- ✓ Cultural practices (tunnel, drip)

Integrated approach for Phytophthora and Colletotrichum Crown Rot management

Fungicides

✓ Colletotrichum

Y Preventative captan applications (susceptible cv)

✓ Phytophthora

- ✓ applications of Ridomil (mefenoxam) after plant establishment (through drip)
- regular applications of phosphorous acid or phosphite materials throughout the season (drip or foliar)

Fungicide plant dipping is a good strategy *only* if problem is known

- ✓ In the case of *C. acutatum* infected plants...
- ✓ Abound: Resistance has limited the efficacy [might still work if R not present]
- Switch: has consistently worked in *most* of our trials but concern about phytotoxicity and overuse [4 app max]
- ✓ Actinovate and others: inconsistent results
- Zivion (natamycin): found effective in FL and CA trials [EPA just approved; OMRI application filed]
- Current recommendation: to dip <u>IF</u> cultivar or nursery is known to have a problem with *C. acutatum*

Current challenges with fungicide recommendations

Emergence of Phytophthora resistance to mefenoxam (FRAC 4)

C. gloeosporioides resistance to Topsin and Abound

Emergence of *C. acutatum* **resistance to QoI fungicides (FRAC 11)**

(FRAC 11 – Qols: Abound, Cabrio, Flint, Merivon, etc)

Develop non-chemical suppressive methods for strawberry diseases

• <u>Heat treatment</u>

- Hot water treatment has been investigated and used to various degrees
 - Beginning with Buchner (1991) for cyclamen mite
- Hot water treatment was commonly used in some nurseries (delayed growth makes it impractical for fruit production)
 - Also reduction in flowering!
- Current protocols are generally not useful for disease management
 - 49°C for 7 min
- Difficult to find a treatment that kills the bacteria (*Xanthomonas*) while minimizing plant damage

'Aerated steam' (plant sauna) field trials

Field trial: effect of heat treatment of transplants inoculated with *P. cactorum*

Inoculated + Heat-treat

37°C for 1 hour 44°C for 4 hours

Treatments	Plant mortality (%)
Inoculated control (non treated)	80.0 a
Inoculated + Heat treated (37°C for 1 hour f.b. 44°C 4 hours)	2.5 b
Non-inoculated (non treated)	0.0 b
Non-inoculated + Heat treated	0.0 b

Effect of steam heat treatment on colonization of transplants by *C. acutatum*

Heat treatment of transplants as cultural management for nurseries

FFR

 Trial results show suppression of Xanthomonas, Phytophthora, Colletotrichum, Botrytis, Powdery mildew, but not Macrophomina

Trials in NC and Quebec nurseries

99°F for 1 hour 111°F for 4 hours

Charcoal Rot caused by Macrophomina phaseolina

* Similar to symptoms caused by Colletotrichum and Phytophthora

Inoculum survives in the soil and strawberry residue (mainly crowns) from previous seasons

- Optimum conditions: high temperatures (~ 85 F), sandy soils and low soil moisture

Inoculum from old crowns can infect new transplants

Double crop (plastic re-used)

Integrated approach for Charcoal Rot management

- ✓ Crop destruction
- ✓ Crop residue removal
- ✓ Cultivar selection

UF IFAS

UNIVERSITY of FLORIDA

✓ Pre-plant fumigation

Macrophomina infested field one year later...

2017-18

2018-19

Integrated approach for management of crown rot diseases

- ✓ Fumigation (Macrophomina) Telone C35, PicClor80, KPam
- ✓ Healthy transplants (*Phytophthora*)
 - ✓ Heat treatment (nurseries)
- ✓ Fungicide injections/sprays (*Phytophthora* and *Colletotrichum*)
 - Important to monitor for fungicide resistance + identify/register new compounds
- ✓ Cultivar selection**

		HS: Highly s	HS: Highly susceptible; S: Susceptible; MS: Moderate susceptible; MR: Moderate resistant; R: Resistant			
Disease	Radiance	Winterstar	FL-127	FL Beauty	Brilliance	
Colletotrichum crown rot	S (50%)	MS (30%)	MR (20%)	MS (30%)	MR	
Phytophthora crown rot	HS (60%)	<mark>S</mark> (50%)	<mark>S</mark> (50%)	MR (20%)	S	
Charcoal rot	MS (50%)	MR (10%)	MR (20%)	MS (40%)	MR	

Emerging problem: *Pestalotiospis (Pestalotia)* leaf and fruit spot

_OGY

Pestalotiospis (Pestalotia) leaf and fruit spot

Symptoms on fruit, leaves, petiole, crown, and root

Other leaf spots may be confused with *Pestalotiopsis*

Common leaf spot (Mycosphaerella fragariae)

Tan center lesions Darker outer zone Leaf scorch (Marssonina fragariae)

Small tan center lesions Darker outer zone Phomopsis leaf blight (Phomopsis obscurans)

Reddish-purple lesions Darker outer zone

Other leaf spots may be confused with *Pestalotiopsis*

Gnomonia leaf blotch (Gnomonia comari – Zythia fragariae)

Cercospora leaf spot (Cercospora sp.) M. Marin M. Marin M. Marin

Pestalotiopsis sp. is not new to strawberry

Reported for many years to cause fruit rot

 1973: C.M. Howard
 (Pestalotia longisetula)

- More recently many reports worldwide of crown/root rot establishment difficulties (weak and stunted plants)
 - Spain, Netherlands, Belgium
 - Mexico, Brazil, Argentina
 - Bangladesh, Vietnam, India (Pestalotiopsis clavispora)

✓ Aggressive leaf spot/blight: New!!!
 UF IFAS

The aggressiveness of current *Pestalotiopsis* outbreak is unprecedented

- In general, *Pestalotiopsis* sp. is considered a weak pathogen; more likely to attack plants previously weakened by other stress factors (e.g. poor growing conditions, physical damage, pests, etc).
- ✓ Definitely not in this case!

We confirmed that isolates from recent outbreaks are more aggressive

NJK-	Tissue	Fruit		Root/Crown
solates	source	inciden <mark>c</mark> e (%)	Severity (%)	Incidence (%)
.1-359R	root	0.0 c	0.0 b	35.0
.1-360C	crown	5.5 c	0.6 b	75.0
.3-460P	petiole	0.0 c	0.0 b	50.0
.3-481R	root	25.0 b	3.8 b	55.0
.4-691R	root	-	Z.	65.0
.6-337C	crown	25.0 b	6.7 b	75.0
.7-10F	fruit	97.2 a	78.4 a	90.0
.7-40F	fruit	100.0 a	81.6 a	65.0
.7-43L	leaf	88.9 a	73.2 a	70.0

Acknowledgment

Questions?

