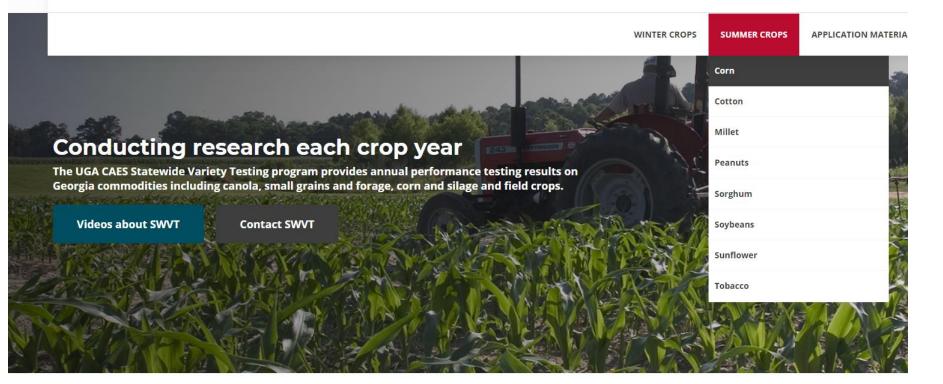


Corn and Soybean Update Crisp County

Rome Ethredge


Interim Extension Agronomist

Department of Crop & Soil Sciences

Statewide Variety Testing

Hybrids to Plant

- Look at UGA Variety test info for your area
- Plant at least 3 different hybrids
- In any one year some do better than others
- If letting dry in field strongly consider lodging propensity
- Consider Genetic protection for insects especially for Later planted
- Especially if planting corn after corn, consider disease ratings (NCLB and SCLB)

Tifton, Georgia: Corn Grain Performance, 2018, Irrigated

			Yield ¹		Ears/	Ear				
Company or	Hybrid		2-Yr	3-Yr	100	Grain	Grain	Grain	Plant	
Brand Name	Name	2018	Avg	Avg	Plants	Wt.	Quality ²	Moist.3	Pop.	Lodging
			bu/acre		no.	lb	rating	%	no.	%
Short-Season										
Dyna-Gro	D54VC14	278			99	0.44	2.0	17.1	35236	0
Croplan	6640 VT3P	276	267	284	100	0.43	2.5	17.7	36197	0
AgriGold	A6544VT2PRO	275	3 4	22	100	0.41	2.0	17.6	36944	0
Local Seed	AV8614VYHR	274			99	0.42	2.0	18.7	36411	0
AgraTech	68VT2P	266	3	10	100	0.41	1.5	17.7	36945	0
Terral Seed	REV24BHR99	264	2		101	0.40	1.5	16.9	36517	2
MorCorn	MC 4457	260		*	96	0.47	2.5	17.2	34809	0
Terral Seed	REV25BHR89	260	÷.	20	99	0.43	2.5	18.6	34702	1
Phoenix	6507A3	259		5 7	100	0.40	2.0	17.7	36411	1
MorCorn	MC 4319	255	257		100	0.44	1.5	17.7	35983	0
AgriGold	A6711VT2PRO	255	269		100	0.41	2.0	18.8	35770	0
Terral Seed	REV25BHR26	255	270	280	101	0.42	3.0	17.8	35877	0
NK Brand	NK 1573-3010	254		-	100	0.39	2.5	18.5	36944	0
Armor	1447 Pro 2	250			99	0.44	2.5	17.2	36090	0
Terral Seed	REV23BHR55	250	274	287	100	0.42	3.0	18.0	35236	0
Augusta	5065GT3111	246			99	0.40	1.5	18.9	34702	1
Augusta	1165VT2PRO	245	251		100	0.38	2.5	18.8	35983	0
Local Seed	LCX20581	243			99	0.38	2.0	18.4	35770	0
AgriGold	A642-59VT2PRO	241			100	0.38	3.5	17.2	35663	0
Local Seed	AV8430VYHR	241			99	0.38	3.0	17.9	35449	1
Average		257 4	265	284	100	0.41	2.3	17.9	35882	0
LSD at 10% L	evel	19	NS	NS	2	0.04	0.9	0.7	1199	-
Std. Err. of En	try Mean	8	7	6	1	0.01	0.3	0.3	507	0
Mid- and Full	Season									
AgraTech	85VT2P	288	278		100	0.44	1.5	18.4	36411	1
Terral Seed	REV28BHR18	286	287		100	0.46	2.0	18.3	35663	0
AgriGold	A6659VT2PRO	278	274		100	0.44	1.5	18.2	35983	0
DEKALB	DKC66-29 TRE	276			101	0.43	1.5	17.4	35877	0
	LOUTED TOP					_	0.0	10.0	01015	

Planting

- Strip till, rip under row
- Plant 2 inches deep for good rooting
- Row Spacing 36, 30, or 20 inches or twins
- Plant Population 34,000 irrigated, 20,000 Dry
 Depends on hybrid

Plant at least 3 different hybrids.

35 Critical days

Just before tassel through Milk stage
Days 55-90

- Tasseling VT and Silking R1 (Pollination Problems)
- Blister Stage R2 (kernel abortion)
- Milk Stage R3 (Roastin' Ear) (kernel abortion)

rigure av. Eurigicaania araa

Figure 48. Planar cross-section of kernels.

Silking	Blister	Milk	Dough	Dent
JIIKIIIg	DIISLEI		Dough	Dent

Pollination problems

Kernel Abortion

Kernel weight

Avoid plant stress

- Stress can hurt pollen, but ½ million for 550 kernels, 4-8 days
- Stress can hurt silks, More likely but wet canopy helps, can be 6 degrees cooler.

Scattered grains.

Plant can abort young kernels during blister and milk stages, sunken in. Ear tip.

Pollination Misses on left, under end gun.

R4 Dough Stage

R3 Milk Stage (Roastin' Ear stage) Highest water use time - 2.4 inches a week Kernel Abortion still possible.

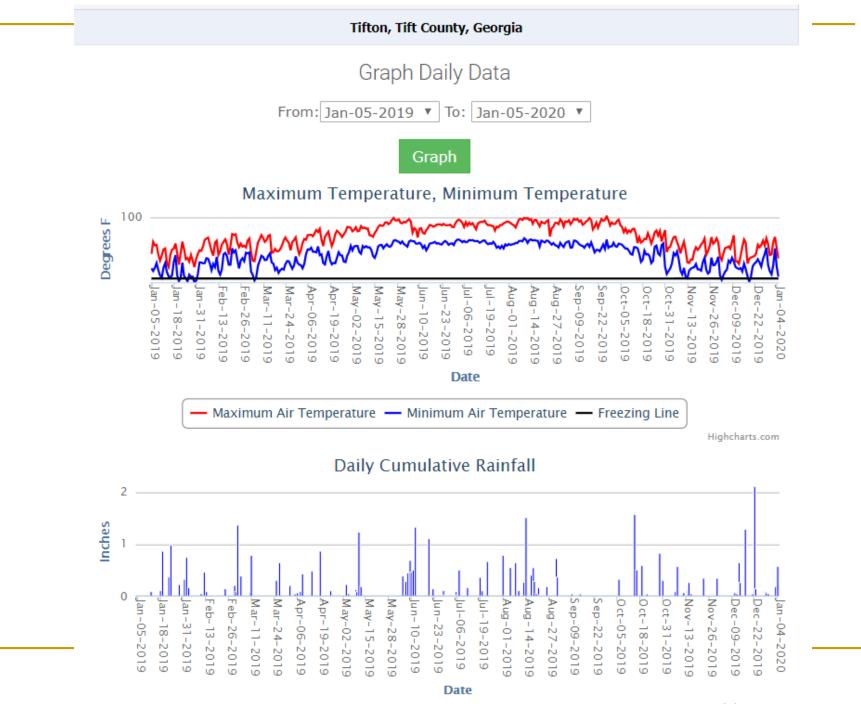
Irrigation system broke down for 2 weeks during blister and milk stage. Kernel abortion occurred.

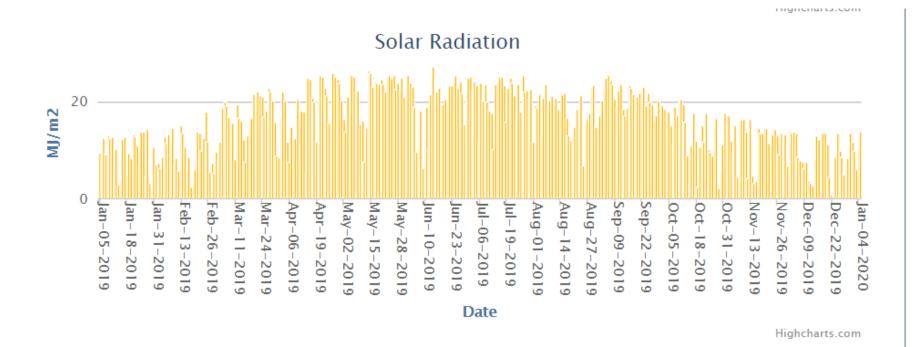
THE MEADOWS ARE COVERED WITH FLOCKS AND THE VALLEYS ARE MANTLED WITH GRAIN; THEY SHOUT FOR JOY AND SING. PSALM 65:13

Rome Ethredge: Corn denting now, about 3.5 weeks to ao.

nov

...


¹/₄ Milkline - Needs almost 3 more weeks and 1.8 inch of water this week


Degree Day Calculator

Choose a station : Tifton 🔻
From: March • 9 • 2019 •
To: July • 18 • 2019 •
Base Temperature: 50 V
Disregard Temperatures Above: 86 🔻
◎ US ◎ Metric
Calculate

From March-9	To July-18	Total
2019	2019	3037
2018	2018	2757
2017	2017	2841
2016	2016	2919

Highcharts.com

Tifton, Ga

Table 10. Estimated Water Use of Corn in Georgia Growth Stage	Days After Planting	Inches Per Day	
	0-7	.03	
Emergence and primary root developing.	8-12	.05	
	13-17	.07	
Two leaves expanded and nodal roots forming.	18-22	.09	
	23-27	.12	
Four to six leaves expanding. Growing point near surface.	28-32	.14	
Other leaves and roots developing.	33-36	.17	
Six to eight leaves	37-41	.19	
Tassel developing. Growing point above ground.	42-45	.21	
Ten to twelve leaves expanded. Bottom 2-3 leaves lost. Stalks growing rapidly. Ear	46-50	.23	
shoots developing. Potential kernel row number determined.	51-54	.25	
Twelve to sixteen leaves. Kernels per row and size of ear determined. Tassel not visible	55-59	.27	
but about full size. Top two ear shoots developing rapidly.	60-64	.29	
Tassel emerging, ear shoots elongating.	65-69	.31	
	70-74	.32	
Pollination and silks emerging.	75-79	.33	
Blister stage.	80-84	.33	
Milk stage, rapid starch accumulation.	85-89	.34	
Early dough stage, kernels rapidly increasing in weight.	90-94	.34	
Dough stage.	95-99	.33	
arly dent.	100-104	.30	
ent.	105-109	.27	
eginning black layer.	110-114	.24	
ack layer (physiological maturity).	115-119	.21	

Protect Leaves

No more leaves after tassel or many roots

Ear leaf and one below and one above
60 % of the active surface area

Before 20% Better quality and yield

Less risk

Georgia Corn Commission

Home

About Us

Board Members

Corn Overview

Corn Statistics

What We Fund

Contact Us

Links

Corn Facts

M The Georgia Corn Commission

About Us

The Georgia Corn Commission was authorized under the state law set by the Commodities Promotion Act. The commission was established in 1993 through a referendum and balloting of Georgia corn growers and is reaffirmed every three years through a statewide balloting of active corn growers.

The commission board oversees a mandatory check-off program of 1 cent per bushel on corn that is produced and sold in Georgia. The check-off is assessed at the first point of sale. Funds from the program can be invested for research, education, market development and promotion purposes only.

The Corn Commission Board is made up of five active corn growers selected by the Georgia Commissioner of Agriculture and two ex-officio members that represent the Georgia Department of Agriculture and Georgia Farm Bureau. The current board members and contact information is located on the Board Members page.

Research Education Promotion, 1 cent per Bushel Every 3 years – Referendum- This year 2020

Early System

Late April, 150,000, RKN, Early mat. Indeterminate 4,

Scout hard, more disease problems, too

Dessicate but not too early, High temps and humidity – Reduce quality Early Sept - Harvest quick

Green from too early Dessication or Drought killing plants

Full Season

- Plant May 10 to June 10, 130,000
- Check fertility, Esp. potassium
- Boron, Dimilin plus Fungicide Small pods
- Water and heat Timing critical, Spread risk different varieties & groups, Flower to R6
 - Days over 95 Hurt
- Watch Insects Loopers and Red Banded late

Ultra late

- Fast growing tall variety, 175000-200000, July best but 1st week in Aug will work
 Getting height is a problem
 Water very well
- Fertilize 30-50 units N
- Close rows 7.5 to 15 can do 30
- Very fast crop, Yields variable
- Intense Scouting, stay ahead Insects

Rural Georgia GROWING STRONGER

YOU are the most important asset to your farm!

Health and financial resources, local programs, and related agency resources are available at **extension.uga.edu/rural**

Follow me: Blog: <u>https://seminolecropnews.wordpress.com/</u> Twitter: Rome Ethredge@RomeEthredge Instagram: romeethredge Snapchat: romeethredge Facebook: Rome N Suzanne Ethredge

Secrets to Growing Good Wheat

Deep Tillage

- Plant around 1st frost date
- Fertilize at planting and sidedress February
- Look for aphids and hessian fly Christmas
- Weed control around Christmas
- Consider Fusarium Head Blight and Rust

Insects

- Aphids carry BYD
- Aphid scout around Christmas
- Treat with pyrethroid for Aphids or Hessian fly

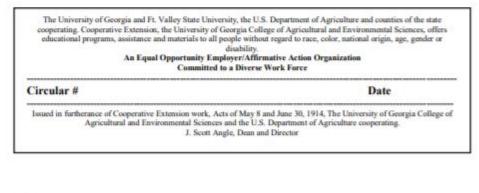
UGA Programs for Controlling Ryegrass and Wild Radish in 2018/2019 Wheat

University of Georgia; A. S. Culpepper and J. C. Vance, Tifton GA

Ryegrass threatens Georgia wheat production. Most ryegrass escapes are a result of 1) planting into fields already infested with emerged ryegrass and/or 2) making herbicide applications after the ryegrass is too large to control. However, herbicide resistant ryegrass threatens Georgia's ability to effectively grow wheat and other small grains. Numerous Georgia populations have been confirmed to be resistant to Osprey, PowerFlex, Axial <u>and</u> Hoelon. Ryegrass will achieve resistance to herbicides quicker than any other plant, even Palmer amaranth. Aggressive resistant management programs must be implemented; ignoring this warning will destroy long-term sustainability of grain production. Proper management begins with a healthy vigorous crop, early identification of ryegrass (below), timely herbicide applications (Tables 1 and 4), tillage including deep turning when feasible, crop rotation, and making wise decisions (Table 2).

Growers must avoid treating fields two years in a row with the same or similar herbicide chemistry.

Hoelon & Axial	Osprey & PowerFlex	Fierce & Zidua
Similar Chemistry	Same Chemistry	Contain Same Chemistry


Table 1. Ryegrass Management

Scenario	Stage of Wheat	Herbicide Option	Comments
Emerged ryegrass	Before planting	Roundup before planting	Follow with Gramoxone at planting if needed. Tillage, especially deep turning, can be effective.
After planting; before ryegrass emerges for residual control	80% of seed germinated with shoot at least ¹ / ₂ " long through spiking	Zidua 0.75 to 1.25 oz/A	Label prohibits true PRE. Plant wheat seed at least 0.75" deep; do not apply to broadcast seeded wheat. Use rate of 1.0 oz/A is ideal for most soils. <i>Must be activated before ryegrass emergence.</i>
After planting; ryegrass ¼" or less plus residual control	95% of wheat in spike to 2-leaf stage	Fierce 1.5 oz/A	Apply only in water; no additives. Wheat must be planted 1 to 1.5" deep; do not apply to broadcast seeded wheat. New label, limit acres. Do not apply on sands. Must be activated before weeds reach 1/2".
Ryegrass ≤1 tiller	3-leaf through joint	Axial XL 16.4 oz/A, PowerFlex HL 2.0 oz/A, or Osprey 4.75 oz/A	Assuming no resistance and proper herbicide rotation. Add appropriate adjuvant. Be certain to use proper rate with formulation selected.
Ryegrass ≤ 1 tiller plus residual control	3-leaf through 4-tiller	Axial XL 16.4 oz/A + Zidua 1 to 1.5 oz/A	If ryegrass is not resistant to Axial then excellent postemergence and residual control expected.

Table 2. Critical Thinking Points for Ryegrass Control

- 1. ABSOLUTELY NO ryegrass emerged when planting wheat. A double knock program is ideal; Roundup fb Gramoxone 5 d later.
- 2. For normal planting and developing wheat, postemergence ryegrass herbicides should be applied around Christmas.
- 3. Do not mix any ryegrass herbicide(s) with 2,4-D, MCPA, Quelex or NITROGEN as antagonism often occurs!!!
- 4. Zidua must be activated before ryegrass emergence but CAN NOT be applied preemergence.
- 5. Under no circumstances should any additive be included with Fierce. Fierce must be activated prior to weeds reaching 1/2 inch.
- 6. Rotation of herbicide chemistry and crops is critical for long-term sustainability of small grain production.

Wild radish is the most problematic broadleaf weed infesting nearly every Georgia wheat field (pictures above). Wild radish seedpods often contaminate harvested grain thereby reducing profits. The seedpod usually does not shatter, but instead, dries down and fragments into small sections. These seedpod sections are very close in size and shape to wheat and are difficult to remove in cleaning (right). Managing wild radish is not difficult if timely management decisions are implemented. Tables 3 and 4 provide management programs while Table 5 includes some critical thinking points.

Scenario **Stage of Wheat Herbicide** Option Comments Radish < 8" diameter. 2- tiller through MCPA (12-16 oz/A) MCPA rate based on 3.8 lb/A. 2,4-D could be used to henbit, chickweed, full tiller + Harmony Extra replace MCPA at full tiller wheat. Many Harmony type most broadleaves products are available; select rate based on product selected. Henbit or chickweed Harmony Extra (2-lf till jointing wheat) Intense weed densities may need treatment before wheat is followed by large enough for MCPA. Sequential applications may be populations emerging MCPA (2-tiller through full-tiller wheat) early plus wild radish needed. 2,4-D could replace MCPA in full tiller wheat.

Table 3. Wild Radish and Other Broadleaf Weeds

Herbicide	Pre-plant	0-1 tiller	2-3 tillers	full tiller	Jointing
2,4 - D	>50%	>50%	20-35%	0-10%	>50%
МСРА	>25%	>30%	0-5%	0-5%	>40%
Harmony Extra	0-5%	0-5%	0-5%	0-5%	0-5%
Harmony + MCPA	>25%	>30%	10%	0-5%	>40%
Harmony + 2,4-D	>50%	>50%	20-35%	0-10%	>50%
Quelex	0-10%	0-10%	0-5%	0-5%	unknown
Osprey	unknown	0-15%	0-15%	0-15%	0-15%
PowerFlex	unknown	0-15%	0-15%	0-15%	0-15%

Table 14. The Effect of Stage of Growth on Wheat Injury by Various POST Herbicides.

	Yield bu/A									
Nutrient	40		70		100					
	Uptake	Removal	Uptake	Removal	Uptake	Removal				
	pounds per acre									
N	75	46	130	80	188	115				
P ₂ O ₅	27	22	47	38	68	55				
K ₂ O	81	14	142	24	203	34				
Mg	12	NA	21	NA	30	NA				
S	10	NA	18	NA	25	NA				

Table 13. Nutrient uptake and nutrient removal by wheat at different yield levels. Removal based on grain only.

Nitrogen (N)

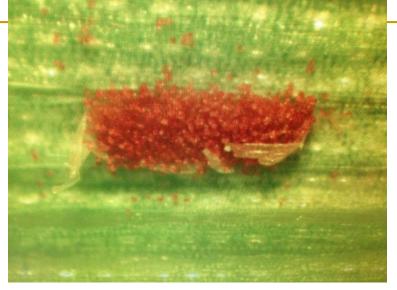
Nitrogen rates and timing of application are key management factors for making good wheat yields. Nitrogen rates should be based on soil potential, cultivar, realistic yield goal, previous crop and residual N. For expected wheat yields of 40 to 70 bushels per acre, use a total N rate of 80 to 100 pounds per acre. Higher yields will likely require rates of 100 to 130 lbs per acre or more.

Apply nitrogen in the fall is critical to encourage good tiller production prior to the onset of winter. Adjust this rate based on the preceding crop. In general, apply N (based on the previous crop rotation) as follows:

Cotton: 35 to 40 lbs ac Corn: 30 to 35 lbs ac Fallow: 25 to 30 lbs ac Soybeans: 15 to 20 lbs ac Peanuts: 0 to 15 lbs ac

Tillers = Grain Heads

- Count tillers last week in January
- If not 80 per square foot split sidedress in 2 applications
- If 80 or more just sidedress 2nd week in February



19 inches with 7.5 inch rows

Rust

Fusarium Head Blight, (Scab)

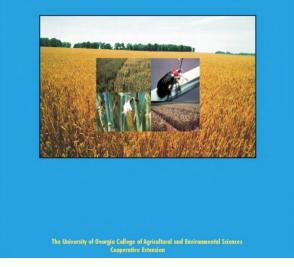
"WHEN FAMINE OR PLAGUE COMES TO THE LAND, OR BLIGHT OR MILDEW, LOCUSTS OR GRASSHOPPERS, OR WHEN ENEMIES BESIEGE THEM IN ANY OF THEIR CITIES, WHATEVER DISASTER OR DISEASE MAY COME. 2 CHRONICLES 6:28

_ I ubit 25. Fungiciuts for Ft	sarram meaa biishe			
Active ingredient	Product	Rate/A (fl. oz)	Head scab	Harvest Restriction
Metconazole 8.6%	Caramba 0.75 SL	13.5 - 17.0	G	30 days
Propiconazole 41.8%	Tilt 3.6 EC	4.0	Р	Feekes 10.5
Prothioconazole 41%	Proline 480 SC	5.0 - 5.7	G	30 days
*Tebuconazole 38.7%	Folicur 3.6 F	4.0	F	30 days
Prothioconazole 19% Tebuconazole 19%	Prosaro 421 SC	6.5 - 8.2	G	30 days
Pydiflumetofen 13.7% Propiconazole 11.4%	Miravis Ace SE	13.7	G	Feekes 10.5.4

Table 25: Fungicides for Fusarium Head Blight

Efficacy categories; P=Poor; F=Fair; G=Good; VG=Very Good; E=Excellent. Timing of fungicide application is crucial for the control of FHB. Research indicates that products within the triazole class of fungicides are most effective if applied at early flowering (Feekes 10.5.1). Strobilurin fungicides are not recommended for management of FHB. Strobilurin fungicides can increase the DON content of FHB-infected grain. *A maximum of 4 fl. oz. of tebuconazole-containing products may be applied per acre per crop season.

Table modified from 2018 fungicide table produced by "The North Central Regional Committee on Management of Small Grain Diseases (NCERA-184)". This information is provided only as a guide. By law, it is the responsibility of the pesticide applicator to read and follow all current label directions. No endorsement is intended for any products listed, nor is criticism meant for products not listed. The University of Georgia and members or participants in the NCERA-184 committee assume no liability resulting from the use of these products. Always check the label before application for the most current rates and application restrictions.



Follow me: Blog: <u>https://seminolecropnews.wordpress.com/</u> Twitter: Rome Ethredge@RomeEthredge Instagram: romeethredge Snapchat: romeethredge Facebook: Rome N Suzanne Ethredge

Southern Small Grains Resource Management Handbook

Wheat, Oats, Barley, Rye, etc

Grain Sorghum (Milo)

- Takes less water
- Use White Sugarcane Aphid Resistant
- Can use Atrazine at 3 leaves 1.2 qts plus 1 gallon per 100 Non-ionic surfactant
- Check Marketing
- 90% of price of corn

50 Day old Milo , No rain in 25 days

Head in stalk

A month later after some rain

Near Harvest

Milo at harvest

Contact Info

- ethredge@uga.edu
- 229-309-0543 Call or Text

<u>https://seminolecropnews.wordpress.com/</u>

Triticale and Rye

Regional Yield Summary: Triticale and Rye Grain Performance, Georgia, 2018-2019

Company or		North ¹		South ²		Statewide	
Brand Name	Variety	2019	2-Yr Avg	2019	2-Yr Avg	2019	2-Yr Avg
				bu	/acre		
Triticale							
ProGene	ACS 14401	77.9		31.7		54.8	
ProGene	Bolt	46.6		32.5	**	39.5	**
ProGene	FR 2260	53.5		*			
ProGene	Wintermax	89.9	+	46.1		68.0	
TriCal	TriCal 342	121.7	79.6	82.4		102.1	79.1
TriCal	TriCal Merlin Max	76.3	78.6	28.6	49.6	52.5	64.1
TriCal	TriCal Surge	70.3	70.5	47.5	57.4	58.9	64.0
UF	FL01143	122.0	82.0	71.4	68.7	96.7	75.4
UF	FL08091	97.1		52.9		75.0	
UF	FL08094	115.9		66.0		91.0	98 99
UF	FL08128	128.2	86.6	78.7	90.9	103.4	88.8
UF	Monarch	117.9		70.2		94.0	
Average		93.1	79.5	55.3	69.0	75.0	74.3
LSD at 10% Level		9.0	6.0	9.3	11.1	6.7	15.4
Std. Err. of Entry Mean		3.3	2.5	3.9	4.6	2.7	6.7
Model R-squared		0.95	0.96	0.89	0.74	0.95	0.23
model i coquare	9	0.00	0.00	0.00	0.14	0.00	0.20
Rye							
GSDC	Wrens Abruzzi	41.6	46.5	29.4	34.9	35.5	40.7
Noble	Bates RS4	55.3	57.4	20.8	33.8	38.0	45.6
Noble	Elbon	37.0	57.4	10.5	55.0	23.7	40.0
Noble	NF95319B	59.6	55.7	23.7	39.8	41.6	47.7
Noble	NF97325	53.8	51.1	18.8	29.6	36.3	40.3
Noble	NF99362	47.5	51.1	20.2	29.0	33.9	40.3
Pennington		38.9		9.8	*	24.3	
TriCal	Wintergrazer 70	59.4	•	25.7	•	42.5	
TriCal	Exp 19R01	53.4	. <u>*</u>		*		*
	Exp 19R02		53.3	21.4	45.0	37.4	49.3
UF	FL 104	66.3	53.3	39.3	45.2	52.8	49.3
UF	FL 2X 405	66.0		33.3		49.6	*
UF	FL 401	57.6		36.1	-	46.8	
Average		53.0	52.8	24.1	36.7	38.5	44.7
LSD at 10% Level		10.2	6.3	8.2	7.7	7.1	7.0
Std. Err. of Entry		4.2	2.6	3.4	3.2	3.0	3.0
Model R-squared		0.66	0.58	0.76	0.71	0.84	0.42

Oat

Regional Yield Summary:

Oat Grain Performance, Georgia, 2018-2019

Company or		N	orth ¹	S	outh ²	Stat	ewide ³	Florida ⁴
Brand Name	Variety	2019	2-Yr Avg	2019	2-Yr Avg	2019	2-Yr Avg	2019
					bu/acre			
Clemson	SCLA 0100214	194.4	153.6	122.9	110.9	149.3	124.3	24.1
Clemson	SCOP 86-4	199.6	171.7	99.5	113.1	136.4	131.5	38.6
Horizon	Horizon 306	192.2	157.8	112.2	109.5	141.7	124.7	55.1
Horizon	Horizon 720	173.1	149.9	109.5	107.6	132.9	120.9	37.0
LSU	LA10001SSBS-20-1	175.5		109.3		133.7		66.2
LSU	LA10044SSBS-1	188.8		136.8		156.0		88.6
LSU	LA11074SBSBSBSB-109	183.1		131.2		150.3		77.3
LSU	LA12068SBSB-58-1	182.4		110.9		137.2		41.7
NCSU	NC12-3447	185.9	153.5	87.4	75.0	123.7	99.7	40.0
NCSU	NC12-3578	180.9	138.6	105.9	102.6	133.5	113.9	55.0
NCSU	NC12-3753	185.3		101.0		132.0		44.7
NCSU	NC12-3922	193.8	154.5	111.6	108.0	141.9	122.6	57.8
SCCIA	Graham	188.3	159.1	111.8	102.5	140.0	120.3	29.5
Average		186.4	154.8	111.5	103.6	139.1	119.7	50.4
LSD at 10% Level		11.2	11.9	14.0	11.8	9.7	12.0	11.7
Std. Err. of En	try Mean	4.4	4.8	7.3	5.0	4.1	5.1	4.8
Model R-squa	red	0.61	0.89	0.57	0.48	0.87	0.58	0.89

1. Calhoun and Athens.

2. Plains, Midville, and Tifton.

3. Calhoun, Athens, Plains, Midville, and Tifton.

4. Citra, Florida.

Bolded yields are statistically non-significant (p = 0.10 level) from the highest yielding test entry.

Italicized lines are experimental varieties not currently on the market.

Yields are calculated as 32 pounds per bushel at 12.5% moisture.

Paraquat Drift in Field Corn

RR Corn Control (Pioneer 33M57) 40 DAT

NTC (123 Bu/A)

SelectMax 0.97EC @ 6 oz/A Induce @ 0.25% v/v AMS X-TRA @ 2.5% v/v (0 Bu/A) Gramoxone Inteon 2SL @ 40 oz/A Atrazine 4L @ 32 oz/A Agridex @ 1% v/v (27 Bu/A)

Applied to 7" tall corn, V4 stage of growth