MINIMIZING DISEASES OF PEANUT IN THE SOUTHEASTERN UNITED STATES # The 2015 Version of the Peanut Disease Risk Index (Peanut Rx) Robert Kemerait, Albert Culbreath, Eric Prostko, Tim Brenneman, Nathan Smith, Scott Tubbs, Rajagopalbabu Srinivasan, Mark Abney and Scott Monfort The University of Georgia, College of Agricultural and Environmental Sciences Barry Tillman, Diane Rowland, and Nicholas Dufault The University of Florida, Institute of Food and Agricultural Sciences > Austin Hagan Auburn University Losses to tomato spotted wilt across the peanut production region of the southeastern United States have continued to show a slight increase over the past couple of years, though the disease is not nearly as severe as it has been in the late 1990's. It is estimated that losses associated with spotted wilt were approximately 3% in 2014. Though this was an increase since 2013 it is believed that growers were able to achieve good-to-excellent management of this disease in large part through combined use of Peanut Rx and varieties with improved resistance. The Spotted Wilt Index and the Peanut Fungal Disease Risk Index were successfully combined in 2005 to produce the Peanut Disease Risk Index for peanut producers in the southeastern United States. The Peanut Disease Risk Index, developed by researchers and Extension specialists at the University of Georgia, the University of Florida, and Auburn University, is now officially known as "PEANUT Rx". The 2015 version of PEANUT Rx has been fully reviewed and updated by the authors based upon data and observations from the 2014 field season. There have been a few updates to PEANUT Rx, 2015 from the 2014 version. The changes that have been made can be found in the cultivar/variety section of Peanut Rx. A new variety for the 2015 Index is TURunnerTM '511". This is a new medium-maturity, high oleic variety from the University of Florida's breeding program. Risk points assigned to 'Georgia-12Y' for white mold have been reduced from "15" to "10" supporting documentation that this variety has good resistance to white mold. Risk points assigned to TUFRunnerTM '727' for tomato spotted wilt have been increased from "15" to "20" indicating that this variety is slightly more susceptible than first believed. All else in the 2015 Peanut Rx is unchanged from 2014. As in the previous versions of the Disease Index, growers will note that attention to variety selection, planting date, plant population, good crop rotation, tillage, and other factors can have a tremendous impact on the potential for disease in a field. #### **Spotted Wilt of Peanut** When tomato spotted wilt virus (TSWV) infects a host plant, it can cause a disease that severely weakens or kills that plant. This particular virus is capable of infecting an unusually large number of plant species including several that are important crops in the southeastern United States. In recent years, peanut, tobacco, tomato and pepper crops have been seriously damaged by TSWV. The only known method of TSWV transmission is via certain species of thrips that have previously acquired the virus by feeding on infected plants. The factors leading to the rapid spread of this disease in the Southeast are very complicated and no single treatment or cultural practice has been found to be a consistently effective control measure. However, research continues to identify factors that influence the severity of TSWV in individual peanut fields. ## Peanuts and fungal diseases: an unavoidable union Successful peanut production in the southeastern United States requires that growers use a variety of tactics and strategies to minimize losses to disease. Weather patterns in Georgia and neighboring areas during the growing season, including high temperatures, high humidity and the potential for daily rainfall and thunder storms, create the near-perfect environmental conditions for outbreaks of fungal diseases. Common fungal diseases include early and late leaf spot, rust, Rhizoctonia limb rot, southern stem rot (referred to locally as "white mold"), Cylindrocladium black rot and a host of other diseases that are common, but of sporadic importance. If peanut growers do not take appropriate measures to manage fungal diseases, crop loss in a field may exceed 50%. Strategies for managing fungal diseases of peanut are typically dependent on the use of multiple fungicide applications during the growing season. Fungicide applications are initiated approximately 30 days after planting, as the interaction between the growth of the crop and environmental conditions are likely to support the development of leaf spot diseases. The length of the effective protective interval of the previous fungicide application determines the timing for subsequent applications. The length of time in which a fungicide can protect the peanut plant from infection is dependent on the properties of the fungicide and on weather conditions. Many growers will begin treating for soilborne diseases approximately 60 days after planting. With attention to proper timing of applications and complete coverage of the peanut canopy, growers can expect good to excellent control of leaf spot and reasonable control of soilborne diseases. Although control of leaf spot may approach 100%, growers typically can only expect about 60-70% control of soilborne diseases with effective fungicide programs. Weather plays a major role in the potential for disease. Most fungal diseases will be more severe during periods of increased rainfall and of less concern during drier periods. When weather conditions are very favorable for disease, severe epidemics may occur in fields where disease was not thought to be a problem. When weather conditions are unfavorable for fungal growth, disease severity may be low even in fields where it has been common in the past. The AU-PNUT leaf spot advisory that has been used to effectively manage diseases in peanut is based on this relationship between disease and weather. Even those growers who do not use AU-PNUT recognize the need to shorten the time between fungicide applications in wet weather. #### **Factors Affecting the Severity of TSWV on Peanut** #### **Peanut Variety** No variety of peanut is immune to TSWV. However, some varieties have consistently demonstrated moderate levels of resistance. In addition to resistance, (reduced disease incidence), some varieties appear to have some degree of tolerance (reduced severity in infected plants) as well. Higher levels of resistance and tolerance are anticipated since peanut breeding programs are now evaluating potential new varieties for response to TSWV. Peanut varieties can have a major impact on fungal diseases as well as tomato spotted wilt. The variety 'Georgia-06G' is currently planted on much of the peanut acreage in the Southeast and it has a significant level of resistance to tomato spotted wilt. However, newer varieties may have improved resistance. For example, the variety 'Georgia-12Y' has resistance to tomato spotted wilt and to white mold that is better than that found in Georgia-06G. Variety TUFRunnerTM '727' has a levels of resistance to white mold and leaf spot better than that found in Georgia-06G; however it is less resistant to tomato spotted wilt. Just as none of the current varieties is immune to spotted wilt, none are completely immune to fungal diseases either. However, improved cultivar resistance will likely lead to a reduction in disease severity. It is important to remember that improved resistance to one disease does not mean that the variety also possesses superior resistance to other diseases. #### **Planting Date** Thrips populations and peanut susceptibility to infection are at their highest in the early spring. The timing of peanut emergence in relation to rapidly changing thrips populations can make a big difference in the incidence of TSWV for the remainder of the season. Optimum planting dates vary from year to year, but in general, early-planted and late-planted peanuts tend to have higher levels of TSWV than peanuts planted in the middle of the planting season. Note: In recent years, peanut planted in the second half of May and in June have been less affected by spotted wilt than in previous years. It is important for larger acreage peanut farmers to spread their harvest season. Some staggering of planting dates may be necessary, but to avoid spotted wilt pressure, it may be more effective to plant varieties with different time-to-maturity requirements as closely as possible within a low-risk time period. If peanuts must be planted during a high-risk period, try to minimize the risk associated with other index factors. Planting date can affect the severity of fungal diseases in a field. Earlier planted peanuts (Aprilearly May) tend to have more severe outbreaks of white mold than do later planted peanuts. Earlier planted peanuts are likely to be exposed to longer periods of hot weather, favorable for white mold, than later planted peanuts which will continue to mature into late summer or early fall. However, the threat from leaf spot is generally more severe on peanuts planted later in the season than earlier. Reasons for this include the warmer temperatures later in the season that are more favorable for the growth and spread of the leaf spot pathogens and because the level of inoculum (number of spores) in the environment increases as the season progresses. Thus, later planted peanuts spend a greater portion of their growth exposed to increased leaf spot pressure than do earlier plantings. **NOTE:** Because of the reduction of tomato spotted wilt in recent years, the increased resistance in new varieties, and the need for timely harvest of the peanut crop, growers are encouraged to consider planting a portion of their crop in April, assuming the risk to tomato spitted wilt is appropriately managed. Growers who plant the MORE RESISTANT peanut varieties in the latter part of April are not at a significant risk to losses from tomato spotted wilt in the 2015 season. #### **Plant Population** An association between skippy stands and higher levels of TSWV was noted soon after the disease began to impact peanut production in Georgia. More recently, research has confirmed the impact of plant population on TSWV incidence. Low and high plant populations may actually have the same number of infected plants, but the percentage of infected plants is greater in low plant populations. In other words, a higher plant population may not reduce the number of infected plants, but it will increase the number of healthy plants that can fill in and compensate for infected plants. In some cases, low plant populations may result in increased numbers of thrips per plant thereby increasing the probability of infection. When plant populations are as low as two plants per foot, severe losses to TSWV have been observed even when other factors would indicate a low level of risk. Getting a rapid, uniform stand with the desired plant population is a function of not only seeding rate but also seed quality, soil moisture, soil temperature and planting depth. **NOTE:** In the 2015 Version of Peanut Rx, peanut varieties with a risk to TSWV at 25 points or less have a reduced risk (10 points) when planted at 3-4 seeds per foot than do varieties with a risk of 30 points or greater (15 points). This is based upon recent research conducted at the University of Georgia by Dr. Scott Tubbs. Plant population has less effect on fungal diseases than on spotted wilt. However, it is now known that the severity of white mold increases when the space between the crowns of individual plants decreases. This is because the shorter spacing allows for greater spread of the white mold fungus, *Sclerotium rolfsii*. #### **Insecticide Usage** In general, the use of insecticides to control thrips vectors has been an ineffective means of suppressing TSWV. In theory, lowering overall thrips populations with insecticides should effectively reduce in-field spread of TSWV. However, insecticides have proven to be ineffective at suppressing primary infection, which accounts for most virus transmission in peanut fields. Despite the overall disappointing results with insecticides, one particular chemical - phorate (Thimet 20G), has demonstrated consistent, low-level suppression of TSWV. The mechanism of phorate's TSWV suppression is not known, but the level of thrips control obtained with phorate is <u>not</u> greater than that obtained with other insecticides. Phorate may induce a defense response in the peanut plant that allows the plant to better resist infection or inhibits virus replication. #### **Row Pattern** Seven to ten-inch twin row spacing, utilizing the same seeding rate per acre as single row spacing, has become increasingly popular in Georgia. Research on irrigated peanuts has shown a strong tendency for significantly higher yields, a one to two point increase in grade and reductions in spotted wilt severity that have averaged 25-30%. The reason for this reduction in spotted wilt is not fully understood. Row pattern, either single or twin row plantings, also has some effect on the potential for disease in a field. Work done at the Coastal Plain Experiment Station has led to the observation that white mold is more severe in single rows (six seed per foot) than in twin rows (three seed per foot). White mold often develops in a field by infecting sequential plants within the same row. Planting the seed in twin rows rather than single rows increases the distance between the crowns of the peanut plants and delays the spread of white mold from plant to plant. The difference in leaf spot between single and twin row peanuts appears to be negligible. ## **Tillage** The tillage method that a grower utilizes can make a big difference in peanut yields. There are many different methods to choose from, each with its own merits and disadvantages for a given situation. Strip tillage has been shown to have some strong advantages (including reduced soil erosion and reduced time and labor required for planting), but in some situations, yields have been disappointing. Unbiased tillage research is difficult to accomplish, but studies have consistently shown that peanuts grown in strip till systems have less thrips damage and slightly less spotted wilt. On-farm observations have confirmed these results, but more studies are needed in order to characterize the magnitude of the reduction. We <u>do not</u> suggest that growers should change their tillage method just to reduce spotted wilt, but we have included tillage in the risk index in an attempt to better identify total risks. Conservation tillage, such as strip tillage, can reduce the amount of disease in a peanut field. For a number of years it has been recognized that spotted wilt is less severe in strip-tilled fields than in fields with conventional tillage. However, in results from recent field trials, it has been documented that leaf spot is also less severe in strip-tilled fields than in conventionally tilled fields, so long as peanut is not planted in consecutive season. Although the exact mechanism is currently unknown, the appearance of leaf spot is delayed in strip-tilled fields and the severity at the end of the season is significantly lower than in conventional tillage. Use of conservation tillage does not eliminate the need for fungicides to control leaf spot, but helps to insure added disease control from a fungicide program. Additional studies have found that white mold may be slightly more sever in strip tillage above conventional tillage; deep turning the soil may help to reduce the treat to white mold by burying initial inoculum (sclerotia). Rhizoctonia limb rot was not evaluated; however cotton is a host for Rhizoctonia solani and the cotton debris would likely serve as a bridge between crops. Disease management is only one of many factors that a grower must consider when choosing to practice either conventional or conservation tillage. However, if a grower decides to practice conservation tillage with peanut production, he can expect lower levels of leaf spot in many instances. ## Classic[®] Herbicide Research and field observations over the past several years have confirmed that the use of Classic (chlorimuron) can occasionally result in an increased expression of tomato spotted wilt of peanut. ## Classic Effects on TSWV in Peanut (2000-2013) Classic Timing (DAE) Since 2000, the effect of Classic Herbicide on tomato spotted wilt in peanut has been assessed in 27 field trials resulting in 90 mean data points. Classic caused an 8% or less increase in tomato spotted wilt about 88% of the time and an increase of more than 8% about 12% of the time. Consequently, these results indicate that the effects of Classic on TSWV are minimal in comparison to the other production practices that influence this disease. Consequently, late-season Florida beggarweed populations that have the potential to reduce harvest efficiency and fungicide spray deposition should be treated with Classic. To date, other peanut herbicides have not been shown to have an influence on spotted wilt. NOTE: Although not related to tomato spotted wilt or any other disease, growers need to be aware of the fact that Classic has caused 7-11% yield reductions when applied to Georgia-06G and Tifguard when grown under weed-free conditions. #### **Crop Rotation** Crop rotation is one of the most important tactics to reduce disease severity in peanut production, or any other cropping situation for that matter. Increasing the number of seasons between consecutive peanut crops in the same field has been shown to reduce disease levels and increase yield. The fungal pathogens that cause leaf spot, Rhizoctonia limb rot, and white mold survive between peanut crops on peanut crop debris, as survival structures in the soil, and on volunteer peanuts. The time that passes between consecutive peanut crops allows for the degradation of the peanut crop debris, thus depriving the fungal pathogens of a source of nutrition. Also, fungal survival structures and spores that are present in the soil have a finite period of viability in which to germinate and infect another peanut plant before they are no longer viable. Fields with longer crop rotations will have less pressure from leaf spot diseases, Rhizoctonia limb rot, white mold, and perhaps CBR, than fields with shorter rotations, or no rotation at all. In Georgia, the Cooperative Extension recommends at least two years between peanut crops to help manage diseases. Choice of rotation crops, along with the length of the rotation, will have an impact on the potential for disease in a field. Rotation of peanut with ANY other crop will reduce the potential for early leaf spot, late leaf spot, and peanut rust. The pathogens that cause these diseases do not affect other crops. Rotation of peanuts with cotton, or a grass crop such as corn, sorghum, or bahiagrass, will reduce the potential for white mold because the white mold pathogen does not infect these crops, or at least not very well. Rotation of peanut with a grass crop will reduce the risk of Rhizoctonia limb rot. However, because cotton is also infected by *Rhizoctonia solani*, rotation with this crop will not help to reduce Rhizoctonia limb rot. Other crops, such as tobacco and many vegetables are quite susceptible to diseases caused by *Rhizoctonia solani* and will not help to reduce the severity of limb rot in a peanut field. Special note: Soybean may be a popular crop for some growers in 2012. Growers must remember that soybeans and peanuts are affected by many of the same diseases. Planting soybeans in rotation with peanuts will not reduce the risk for CBR or peanut root-knot nematodes and will have only limited impact of risk to white mold and Rhizoctonia limb rot. #### **Field History** The history of disease in a field can be an important hint at the possibility of disease in the future, for much the same reason as noted in the crop rotation section above. Fields where growers have had difficulty managing disease in the past, despite the implementation of a good fungicide program, are more likely to have disease problems in the future than are fields with less histories of disease. There is some difference between white mold and Rhizoctonia limb rot with regards to field history. Where white mold has been a problem in the past, it can be expected to be again in the future. Without effective crop rotation, outbreaks of white mold can be expected to become increasingly severe each season. Rhizoctonia limb rot is a disease that is more sensitive to environmental conditions, especially rainfall and irrigation, than white mold. Therefore, the severity of Rhizoctonia limb rot is likely to be more variable than white mold from year to year based upon the abundance of moisture during the season. ## Irrigation Irrigation is a critical component of a production system and can result in large peanut yields. However, the water applied to a crop with irrigation is also beneficial for the fungal pathogens that cause common diseases such as leaf spot, Rhizoctonia limb rot, and white mold. Rhizoctonia limb rot is likely to be more severe in irrigated fields with heavy vine growth; the increase in white mold may be less obvious. High soil temperatures as well as moisture from irrigation affect the severity of white mold. Fungi causing leaf spot diseases need water for several important reasons, including growth, spore germination and infection of the peanut plant, and in some cases, spread of the fungal spores. Use of irrigation may extend the period of leaf wetness and the time of conditions favorable for leaf spot diseases beyond favorable conditions in a non-irrigated field. In two otherwise similar fields, the potential for disease is greater in the irrigated field. ## **Measuring TSWV Risk** Many factors combine to influence the risk of losses to TSWV in a peanut crop. Some factors are more important than others, but no single factor can be used as a reliable TSWV control measure. However, research data and on-farm observations indicate that when combinations of several factors are considered, an individual field's risk of losses due to TSWV can be estimated. There is no way to predict with total accuracy how much TSWV will occur in a given situation or how the disease will affect yield, but by identifying high risk situations, growers can avoid those production practices that are conducive to major yield losses. The University of Georgia Tomato Spotted Wilt Risk Index for Peanuts was developed as a tool for evaluation of risk associated with individual peanut production situations. When high-risk situations are identified, growers should consider making modifications to their production plan (i.e. variety, planting date, seeding rate, etc.) to reduce their level of risk. Using preventative measures to reduce risk of TSWV losses is the only way to control the disease. After the crop is planted, there are no known control measures. The index combines what is known about individual risk factors into a comprehensive, but simple, estimate of TSWV risk for a given field. It assigns a relative importance to each factor so that an overall level of risk can be estimated. The first version of the index was developed in 1996 and was based on available research data. Small plot studies and on-farm observations have been used to evaluate index performance each year since release of the first version. In research plots where multiple TSWV management practices were used, as little as 5% of the total row feet were severely affected by TSWV compared to over 60% in high-risk situations. Yield differences were over 2000 lbs. per acre in some cases. Results of these and other validation studies have been used to make modifications in all subsequent versions of the index. Future changes are expected as we learn more about TSWV. Keep in mind that the risk levels assigned by this index are relative. In other words, if this index predicts a low level of risk, we would expect that field to be <u>less likely</u> to suffer major losses due to TSWV than a field that is rated with a higher level of risk. A low index value does <u>not</u> imply that a field is immune from TSWV losses. Losses due to TSWV vary from year to year. In a year where incidence is high statewide, even fields with a low risk level may experience significant losses. **Measuring Risk to Fungal Diseases of Peanut** The index presented here is based upon better understanding of factors that affect disease incidence and severity. It is designed to help growers approximate the magnitude of the risk that they face from foliar and soilborne diseases in the coming season. More importantly, it should serve as an educational tool that allows the grower to predict the benefits of different management practices he makes in hopes of producing a better crop. The risks associated with leaf spot, white mold and Rhizoctonia limb rot diseases are to be determined independently in the index system to be presented here. The magnitude of points associated with each variable is not linked between soilborne and foliar disease categories. However, the points allotted to each variable in the PEANUT Rx are weighted within a disease category according to the importance of the variable (such as variety or field history) to another variable (such as planting date). For example, within the category for leaf spot diseases, a maximum of 30 points is allotted to the variable "variety" while 0 points is allotted to the variable "row pattern". The magnitude of points assigned within each category and to each variable has been checked to ensure that the total number of points assigned to a field is consistent with research and experience. For example, while it would be possible for a non-irrigated field planted to Georgia Green to fall in the lowest risk category, a field of irrigated Georgia Green could be in a category of "medium risk" but not "low risk". **NOTE:** When weather conditions are favorable for fungal diseases, especially when rainfall is abundant, even fields at initial "low risk" to fungal diseases may become "high risk". #### **PEANUT Rx** For each of the following factors that can influence the incidence of tomato spotted wilt or fungal diseases, the grower or consultant should identify which option best describes the situation for an individual peanut field. An option must be selected for each risk factor unless the information is reported as "unknown". A score of "0" for any variable does not imply "no risk", but that this practice does not increase the risk of disease as compared to the alternative. Add the index numbers associated with each choice to obtain an overall risk index value. Compare that number to the risk scale provided and identify the projected level of risk. **Peanut Variety** | Variety ¹ | Spotted
Wilt Points | Leaf Spot
Points | Soilborne
Disease
Points | |---|------------------------|---------------------|--------------------------------| | | | | White mold | | Bailey ³ | 10 | 15 | 10 | | Florida-07 ² | 10 | 20 | 15 | | Florida Fancy ² | 25 | 20 | 20 | | Florida Fancy ² FloRun TM '107 ² | 20 | 25 | 20 | | Georgia-06G | 10 | 20 | 20 | | Georgia-07W | 10 | 20 | 15 | | Georgia-09B ² | 20 | 25 | 25 | | Georgia-12Y | 5 | 20 | 10 | | Georgia Green | 30 | 20 | 25 | | Georgia Greener ³ | 10 | 20 | 20 | | Tifguard ⁵ | 10 | 15 | 15 | | TUFRunner [™] '727' ² | 20 | 15 | 15 | | TUFRunner [™] '511' ^{1,2} | 20 | 30 | 15 | ¹Adequate research data is not available for all varieties with regards to all diseases. Additional varieties will be included as data to support the assignment of an index value are available. **Planting Date** | Peanuts are planted: | Spotted Wilt
Points ¹ | Leaf Spot
Points | Soilborne Disea | ase Points | |----------------------|-------------------------------------|---------------------|-----------------|------------| | | | | White mold | Limb rot | | Prior to May 1 | 30 | 0 | 10 | 0 | | May 1 to May 10 | 15 | 0 | 5 | 0 | | May 11-May 31 | 5 | 5 | 0 | 0 | | June 1-June 10 | 10 | 10 | 0 | 5 | | After June 10 | 15 | 10 | 0 | 5 | Plant Population (final stand, not seeding rate) | int Population (inial Stand, not Seeding rate) | | | | | | | |--|---------------------|-----------|-------------------------|------------|--|--| | Plant stand: | Spotted Wilt | Leaf Spot | Soilborne Disea | ase Points | | | | | Points ¹ | Points | | | | | | | | | White mold ² | Limb rot | | | | Less than 3 plants/ft | 25 | NA | 0 | NA | | | | 3 to 4 plants/ft ³ | 15 | NA | 0 | NA | | | | 3 to 4 plants/ft ⁴ | 10 | NA | 0 | NA | | | | More than 4 plants/ ft | 5 | NA | 5 | NA | | | ¹Only plant during conditions conducive to rapid, uniform emergence. Less than optimum conditions at planting can result in poor stands or delayed, staggered emergence, both of which can contribute to increased spotted wilt. Note: a twin row is considered to be one row for purposes of determining number of plants per foot of row. ²High oleic variety. ³Varieties Georgia Greener, and Bailey have increased resistance to Cylindrocladium black rot (CBR) than do other varieties commonly planted in Georgia. ⁴Tifquard has excellent resistance to the peanut root-knot nematode. #### **At-Plant Insecticide** | Insecticide used: | Spotted Wilt Points* | Leaf Spot
Points | Soilborne Disease Points | | |-----------------------|----------------------|---------------------|--------------------------|----------| | | | | White mold | Limb rot | | None | 15 | NA | NA | NA | | Other than Thimet 20G | 15 | NA | NA | NA | | Thimet 20G | 5 | NA | NA | NA | ^{*}An insecticide's influence on the incidence of TSWV is only one factor among many to consider when making an insecticide selection. In a given field, nematode problems may overshadow spotted wilt concerns and decisions should be made accordingly. #### **Row Pattern** | Peanuts are planted in: | Spotted Wilt Points | Leaf Spot
Points | Soilborne Di | sease Points | |-------------------------|---------------------|---------------------|--------------|--------------| | | | | White mold | Limb rot | | Single rows | 10 | 0 | 5 | 0 | | Twin rows | 5 | 0 | 0 | 0 | #### Tillage | Tillage | Spotted Wilt Points | Leaf Spot
Points | Soilborne Dis | sease Points | |--------------|---------------------|---------------------|---------------|--------------| | | 1 011113 | 1 011113 | White mold | Limb rot | | | | | vville illoid | Lillib lot | | conventional | 15 | 10 | 0 | 0 | | reduced* | 5 | 0 | 5 | 5 | ^{*} For fungal diseases, this is does not apply for reduced tillage situations where peanut is following directly behind peanut in a rotation sequence. Limb rot can exist on some types of crop debris and use the organic matter as a bridge to the next peanut crop. ## Classic® Herbicide* | | Spotted Wilt Points | Leaf Spot
Points | Soilborne Di | sease Points | |--------------------|---------------------|---------------------|--------------|--------------| | | | | White mold | Limb rot | | Classic Applied | 5 | NA | NA | NA | | No Classic Applied | 0 | NA | NA | NA | ^{*}Use of Classic is not recommended for fields planted to Georgia-06G. Research has documented a slight yet consistent yield reduction when Classic herbicide is applied specifically to Georgia-06G. ²It is known that closer planted peanuts tend to have an increased risk to white mold. ³This category (15 risk points for spotted wilt) is only for varieties with a risk to spotted wilt of MORE THAN 25 points. ⁴This category (10 risk points for spotted wilt) is for varieties with 25 point or less for risk to spotted wilt. ^{**&}quot;Funky" or "irregular" leaf spot tends to be more severe in conservation tillage than in conventional tillage, though this malady is not typically associated with yield losses. Crop Rotation with a Non-Legume Crop. | | <u> </u> | | | | |----------------------|--------------|-----------|--------------|--------------| | Years Between Peanut | Spotted Wilt | Leaf Spot | Soilborne Di | sease Points | | Crops* | Points | Points | | | | | | | White mold | Limb rot | | 0 | NA | 25 | 25 | 20 | | 1 | NA | 15 | 20 | 15 | | 2 | NA | 10 | 10 | 10 | | 3 or more | NA | 5 | 5 | 5 | ^{*}All crops other than peanut are acceptable in a rotation to reduce leaf spot. Cotton and grass crops will reduce the severity of white mold. Rhizoctonia limb rot can still be a significant problem, especially with cotton, under a longer rotation with favorable conditions, e.g. heavy vine growth & irrigation/ rainfall. Rotation with soybeans can increase risk to white mold, Rhizoctonia limb rot, and CBR. Rotation with grass crops will decrease the potential risk of limb rot; tobacco and vegetables will not. Note that rotation of peanuts with soybeans may lower the risk for leaf spot diseases, but it does not reduce the risk to CBR or peanut root-knot nematodes and only has minimal impact on risk to white mold or to Rhizoctonia limb rot. **Field History** | Previous disease problems in the field?* | Spotted Wilt Points | Leaf Spot
Points | Soilborne Di | sease Points | |--|---------------------|---------------------|--------------|--------------| | | | | White mold | Limb rot | | NO | NA | 0 | 0 | 0 | | YES | NA | 10 | 15 | 10 | ^{* &}quot;YES" would be appropriate in fields where leaf spot and/or soilborne diseases were a problem in the field despite use of a good fungicide program. Irrigation | Does the field receive | Spotted Wilt | Leaf Spot | Soilborne Di | sease Points | |------------------------|--------------|-----------|--------------|--------------| | irrigation? | Points | Points | | | | | | | White mold | Limb rot | | NO | NA | 0 | 0 | 0 | | YES | NA | 10 | 5* | 10 | ^{*} Irrigation has a greater effect on Rhizoctonia limb rot than on southern stem rot (white mold) or Cylindrocladium black rot. ## **Calculate Your Risk** Add your index values from: | | Spotted Wilt
Points | Leaf Spot
Points | White Mold
Points | Rhizoctonia
Limb Rot
Points | |--------------------------------|------------------------|---------------------|----------------------|-----------------------------------| | Peanut Variety | | | | Points | | | | | | | | Planting Date | | | | | | Plant Population | | | | | | At-Plant Insecticide | | | | | | Row Pattern | | | | | | Tillage | | | | | | Classic [®] Herbicide | | | | | | Crop Rotation | | | | | | Field History | | | | | | Irrigation | | | | | | Your Total Index Value | | | | | ## **Interpreting Your Risk Total** Point total range for tomato spotted wilt = 35-155. Point total range for leaf spot = 10-100. Point total range for white mold = 10-95. Point total range for Rhizoctonia limb rot = 15-75. ## Risk | | Spotted
Wilt
Points | Leaf
Spot
Points | Soilborn | e Points | | |--|---------------------------|------------------------|------------|------------|--| | | | | white mold | limb rot | | | High Risk | ≥115 | 65-100 | 55-80 | To be | | | _ | | | | determined | | | High Risk for fungal diseases: Growers should always use full fungicide input program in a high-risk situation. | | | | | | | Medium Risk | 70-110 | 40-60 | 30-50 | To be | | | | | | | determined | | | Medium Risk for fungal diseases: Growers can expect better performance from standard fungicide programs. Reduced fungicide programs in research studies have been successfully implemented when conditions are not favorable for disease spread. | | | | | | | Low Risk | ≤65 | 10-35 | 10-25 | To be | | | | | | | determined | | | - D: - (| | · | 19 1 4 1 | | | Low Risk for fungal diseases: These fields are likely to have the least impact from fungal disease. Growers have made the management decisions which offer maximum benefit in reducing the potential for severe disease; these fields are strong candidates for modified disease management programs that require a reduced number of fungicide applications.