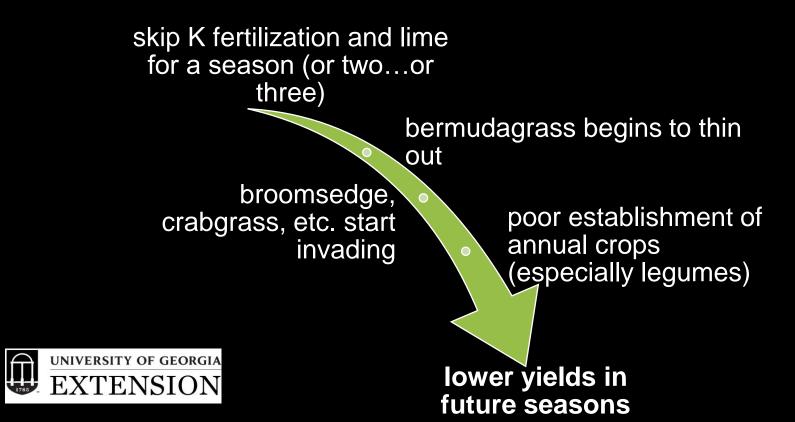
5 Ways to Save on Forages

Savannah Tanner

Emanuel County Extension

UGA Extension Forage Team



■ 2021 **■ 2022**

January 2022

1 Soil Testing and fertilizing according to a soil test

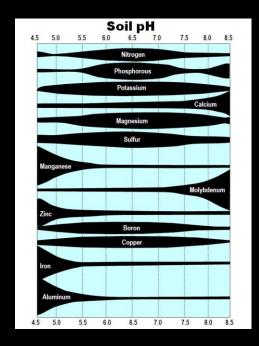
Low fertility in summer can lead to bigger problems later

What type of lime should I use?

 Agricultural limestone is the most common, but other products (wood ash, marl, basic slag, egg shells, etc.) can be used.

Dolomitic Lime	Calcitic (Hi-Cal) Lime	
calcium + magnesium	calcium	
80% between 0.5 and 2 mm	smaller than 0.25 mm	
	greater neutralizing value	

When should I apply lime?


There is never a "bad" time to put out lime! Consider applying lime during "off times" of the year to save money

<u>Remember</u>: it takes 6-12 months to see a substantial change in pH

Can take 12-18 months in heavier soils

<u>At a minimum: 1 ton/ac</u> of ag lime will be needed every 3 years to offset N fertilizer

The unseen cost of not applying lime

The difference of a soil pH of 5.6 vs. 6.2:

	Amt. Used Annually	Unit Price	Dec. in Efficiency	Value of Decrease
	(Lbs./acre)	(\$/lb.)		(\$/acre)
N	200	\$0.60	35%	-\$42
P ₂ O ₅	50	\$0.55	50%	-\$14
K ₂ O	150	\$0.40	10%	-\$6
			Total	-\$62

Dr. Baxter

What if I can't afford to fertilize at a full rate?

- It may be tempting to cut out one or more nutrients
- It is important for plant health and stand longevity to keep nutrients in balance!

Nitrogen fertilizer options

Fertilizer	% N	Effect on pH
Ammonium nitrate	34	$\checkmark \checkmark$
Ammonium sulfate	21	$\downarrow \downarrow \downarrow \downarrow \downarrow$
UAN	28-32	$\checkmark \checkmark$
Urea	46	$\checkmark \checkmark$
Urea (sulfur coated)	38	$\downarrow \downarrow \downarrow \downarrow$
Broiler litter	3	\uparrow
Cattle manure	1.5	\checkmark
Anhydrous ammonia	82	$\downarrow \downarrow \downarrow \downarrow$

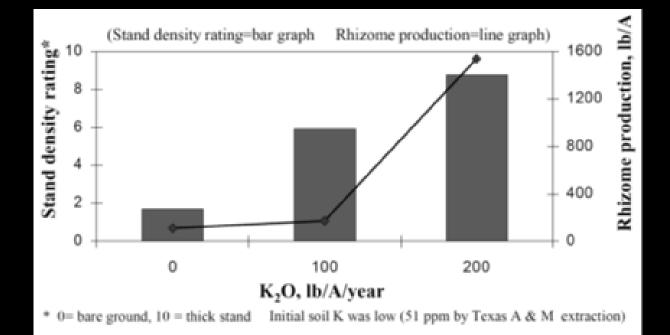
Phosphorus fertilizer options

Fertilizer	% P ₂ O ₅	Effect on pH
Diammonium phosphate	46	$\checkmark \checkmark \checkmark$
Monoammonium phosphate	48	$\psi \psi \psi \psi$
Triple superphosphate	46	
Broiler litter	2-3	\uparrow
Cattle manure	1.5	\checkmark

Apply P in late summer or fall

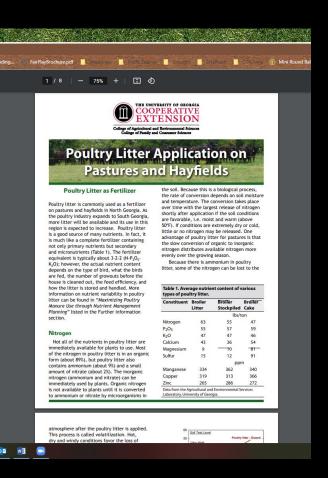
Potassium fertilizer options

Fertilizer	% K ₂ O	Effect on pH
Muriate of potash	60	
Broiler litter	2	\uparrow
Cattle manure	1.2	\checkmark

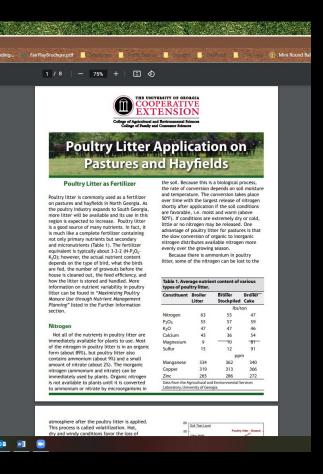


Split K Applications

Apply 40-50% in late spring and the other 50-60% in mid-late season 200 lbs. rate for 3-4 years = \$200-\$300 per Dr. Hancock


• 2022 Price of \$800/ ton = \$320 for 4 years.

Re-sprigging a field will cost at least \$400/A + 6-12 months lost production if you can find a sprigger.


Should I use broiler litter?

- Get the litter tested BEFORE it is applied
- Nitrogen: only ~50% is available during the growing season when it is applied (very little carryover)
- **Phosphorus**: most will be available during growing season when it is applied
- **Potassium**: most will be available during growing season when it is applied

Other things to consider...

- Broiler litter does not contain the correct ratio of nutrients for forages!
 - Litter has 3:2:2 ratio
 - Forages need 4:1:3
 - Apply litter to meet P recommendation
 - Supplement N and K with commercial (inorganic) fertilizers to avoid environmental concerns

#2 Utilizing Technology and Equipment Calibration

Light Bar GPS Guidance

Less overlap = fewer passes

Less time and reduced fuel consumption

Added benefit when combined with section control

Overlap increases input costs more than you think.

10% overlap \rightarrow increases input costs by ~\$50-70/ac

Percent Overlapped	Hayfield	Pasture
10% Overlap	\$771	\$574
1% Overlap	\$708	\$527

Can I afford a light bar?

10% overlap \rightarrow increases input costs by ~\$50-70/ac

A light bar costs \$1000-\$2000 -Dr. Simer Virk

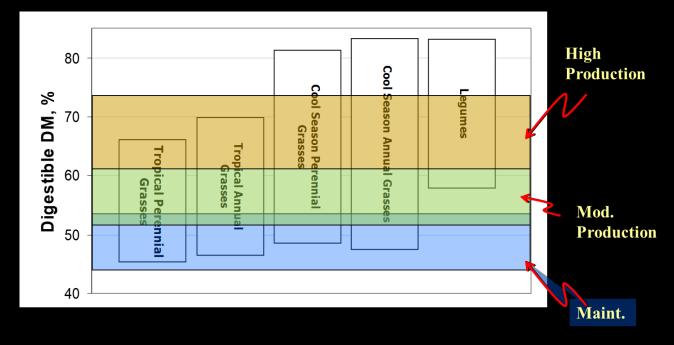
What about diesel costs? Labor? Insecticides?

Calibrating Planting Equipment

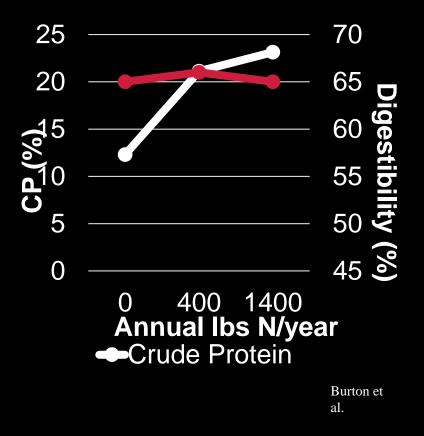
Preparing and Calibrating a No-Till or Conventional Drill for Establishing Forage or Cover Crops

Calibrating Spray Equipment

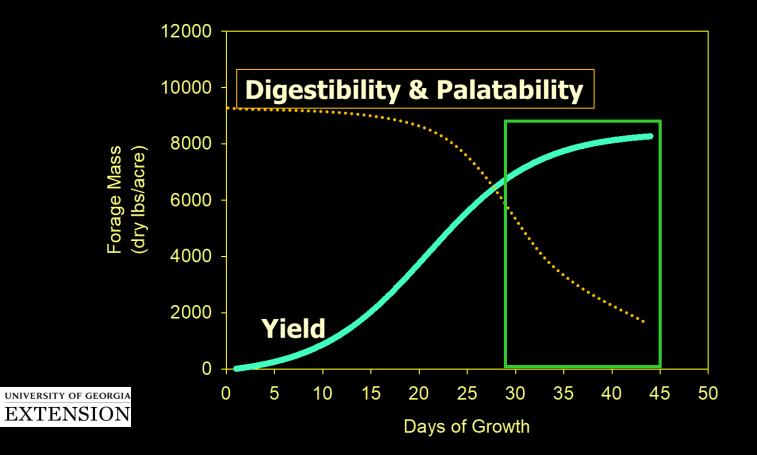
Visit our YouTube channel for videos on boom sprayer calibration and maintenance


#3 Preserving Forage Quality

Factors Affecting Forage Yield and Quality


Forage Species

What affects forage quality more? Harvest timing or fertilization?


CP increases with fertilization, but digestibility remains unchanged. How much of the protein is nitrates?

Plant Maturity

1785

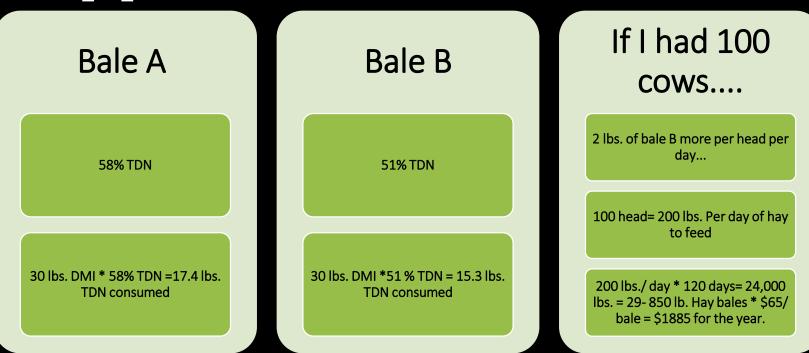
Rain Event

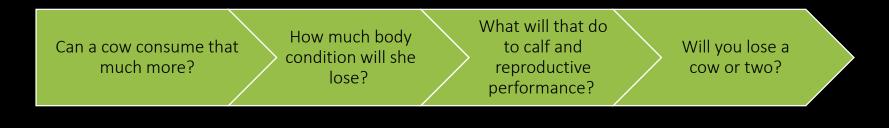
Every day after 28 days = about 0.5% drop in TDN

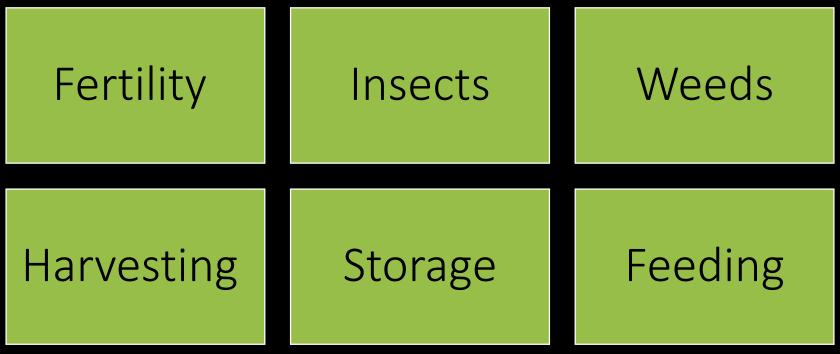
1 week delay to avoid ½ inch of rain = about 3.5% drop in TDN

A ¹/₂ inch rain = about 1% drop in TDN

Cut the hay.

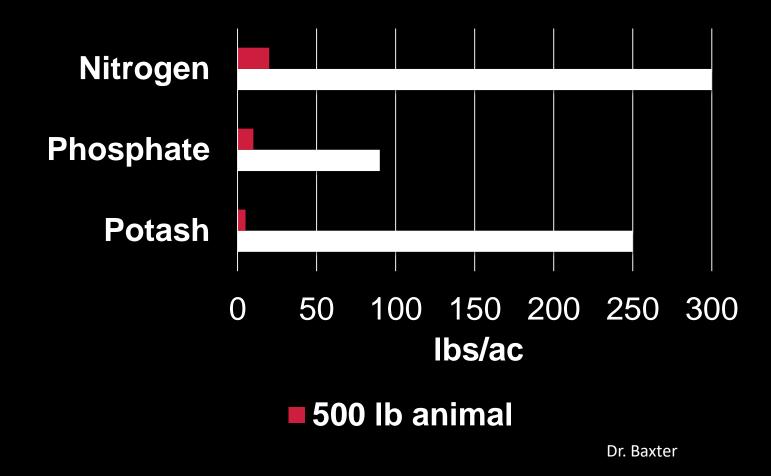



It costs a lot of money to be cheap

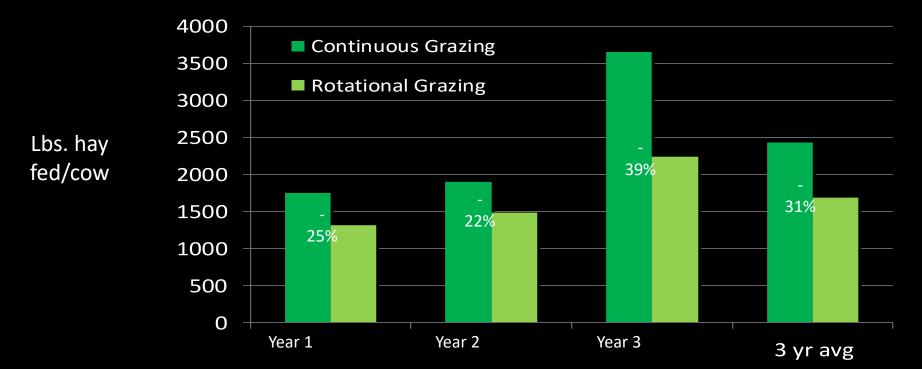

What if I don't feed supplements?

#4 Preventing Forage Losses

Top yield losses in forages

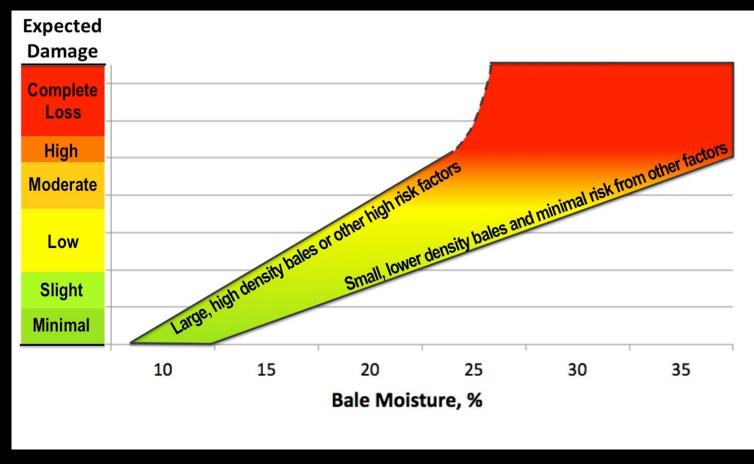


Harvesting Methods


System		Efficiency
Grazi	ing	
	Continuous Stocking	30-40%
	Slow Rotation (3-4 paddocks)	50-60%
	Moderate Rotation (6-8 paddocks)	60-70%
	Strip Grazing	70-80%
Mechanical		
	Нау	30-70%
	Silage	60-85%
	Green Chop	70-95%

Nutrient Removal Per Acre

Effect of Grazing System on Hay Needs


\$37.54/cow savings using \$100/ton hay

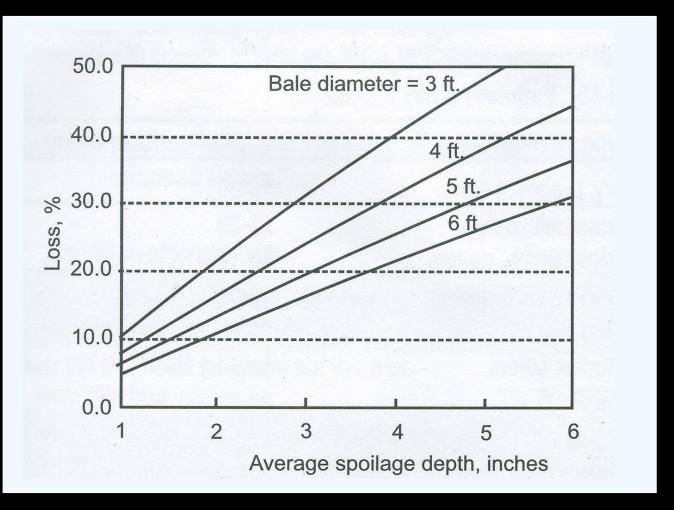
Annual Grazing

Rye + Ryegrass Conventionally Drilled: \$204/ Acre

Hybrid Bermuda: \$463 (does not include herbicide or insecticide application)

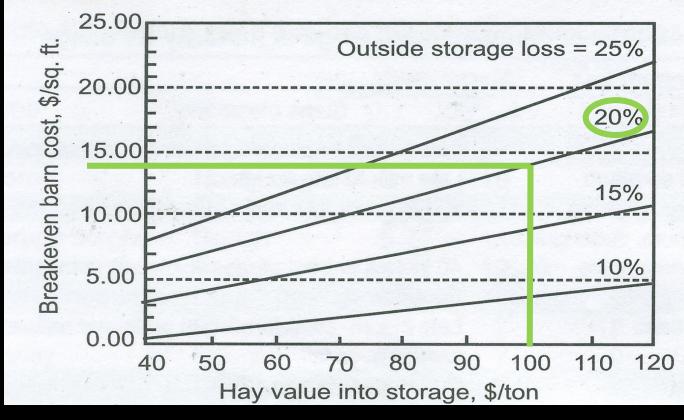
Summer Annuals

	<u>Safe Zone</u> Minimal DM loss			 Entering Danger Zone Monitor hay temperature 2-4 times per day Promote circulation of air in hay stack 		Danger Zone Fire is Imminent if > 175-180 °F • Notify fire department BEFORE moving hay • Remove hot hay with FD assistance					RE		
1	LOO	110	120	130	140 Hay	¹⁵⁰ Tem	160 Ipera	170 ature	¹⁸⁰ e, °F	190	200	210	220



Typical Hay Storage Losses

Storage	Method	Twine	Net wrap		
		(% of dry weight)			
Pole barr	ו	2-5%	2-5%		
Hoop str	ucture	2-5%	2-5%		
Tarp		5-10%	5-8%		
Stack pad,					
	covered stack	5-10%	5-8%		
	uncovered stack	15-40%	10-30%		
Plastic wrap		5-10%	N/A		
Outside on ground,					
	well-drained	20-40%	15-40%		
	poor drainage/shaded	30-60%	30-45%		



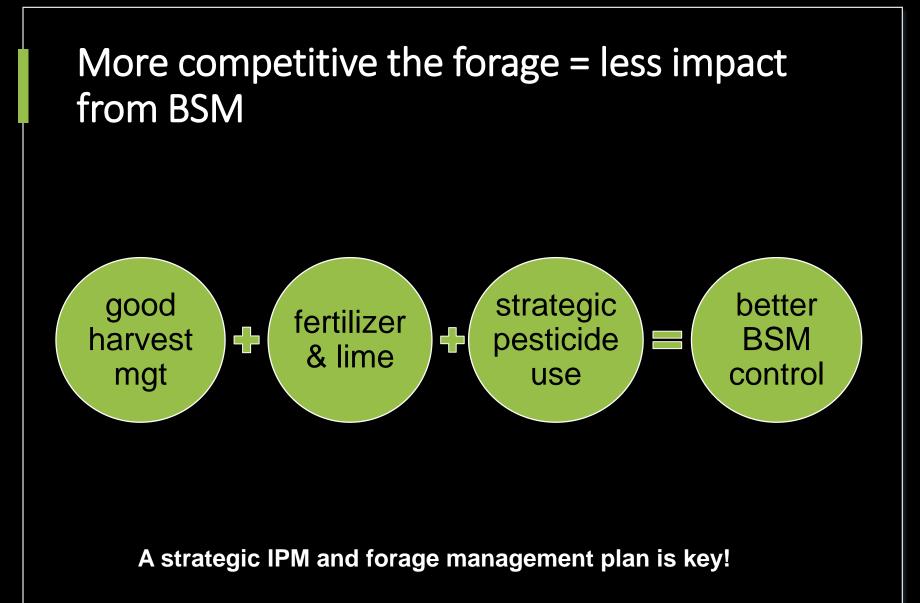
Storage Losses

Source: Forage Crop Pocket Guide

Can I afford to build a barn?

Source: Forage Crop Pocket Guide

If it has to be outside...

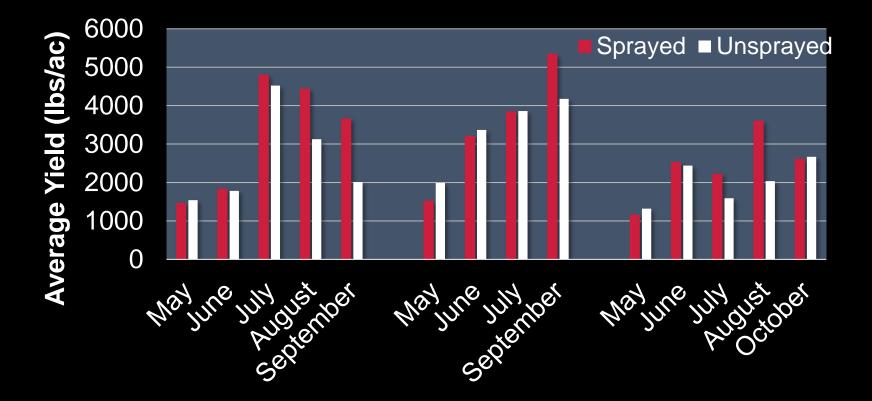

Orientation	Store bales with north to south orientation		
Location	Don't store under trees		
Density	Make dense bales		
Elevation	Elevate the bales		

Feeding Losses

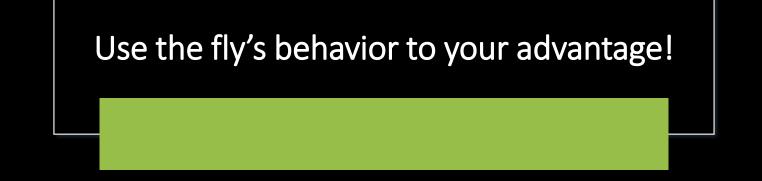
Adapted from: Southern Forages (5th ed.); Buskirk et al., 2003. J. Anim. Sci. 81:109-115; Ball et al., 1998; and Hancock, unpublished data.

Feeding Method	Feeding Period (days)	% Waste
Mechanical hay feeder/unroller	<u>≤</u> 1	2 - 7%
Cone hay ring	1-3	2 - 7% (only 5.4% by day 7
Hay ring	1-3	4 - 8%
Hay trailer	1-3	10 - 15%
Hay cradle	1-3	15 - 20%
Bale, no protection	1-3	20%+
Bale, unrolled	4+	20%+ (43% by day 7)

#5 Managing Chemical Inputs



Bermudagrass Stem Maggot


- BSM may cause yield and economic losses, but unnecessary insecticide applications are more costly! How do those applications affect resistance in armyworms?
- Weekly insecticide applications would result in:

~\$13,000 seasonal *net loss* for a 100-ac hay producer despite 15-20% yield increase in finer varieties during peak season If left entirely unsprayed, the same producer would have still generated ~\$4,000 in *profit*

We do not have to spray at every harvest.

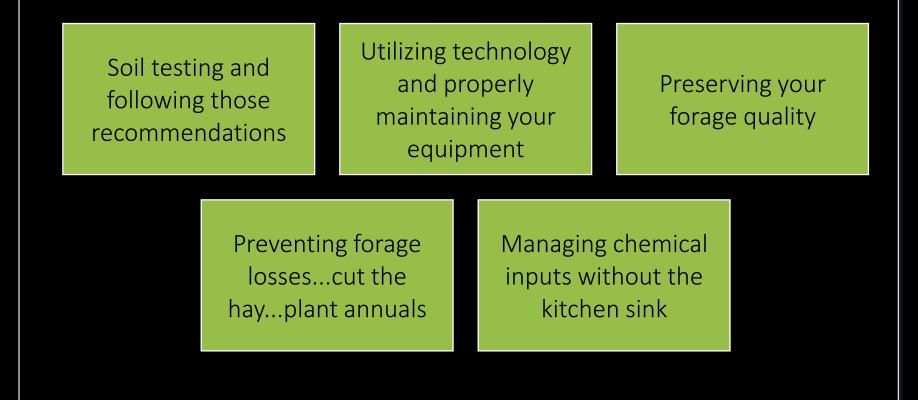
BSM damage is most severe in late July to mid-September!

Time	Avg. # flies from 60 swings
11:00 AM	25
2:00 PM	13
5:00 PM	14

	Stic	ky card	xy card ht.			
Time	8"	16"	24"			
11:00 AM	3.3	1.1	0.3			
2:00 PM	2.6	0.7	0.3			
5:00 PM	2.1	1.2	0.5			

PREs are more cost effective than you think!

- Does not include application costs (assume \$12-15/ac)
- Prowl H2O = 2-4 applications
- Rezilon = 1-2 applications


Herbicide options	Cost/ac
Prowl H2O (4.1 qts/ac/yr)	\$76
Rezilon (3 oz/ac for crabgrass; 6 total)	\$30-60

POST costs can add up!

- Does not include application costs (assume \$12-15/ac)
- Mowing would use even more fuel than spraying!

Herbicide options	Cost/ac
Pastora (1.25 oz/ac)	\$25
2,4 – D (up to 1 gallon/yr)	\$18
GrazonNext (20 oz/ac/yr)	\$14

The quickest way to save money without extra inputs can be done in these 5 steps.

Questions?

478-357-6551 satanner@uga.edu

