Results of the 2014 Fungicide Sensitivity Monitoring Program and Implications for Scab Management in 2015

Katherine Stevenson
Tim Brenneman
Jason Brock

Department of Plant Pathology University of Georgia Tifton, GA

Management of Pecan Scab

What makes scab so difficult to control?

- weather
- susceptible cultivars
- tight orchards (restricted air movement, high RH, long periods of leaf wetness)
- poor spray coverage
- reduced sensitivity of the scab pathogen to fungicides

History of Fungicide Resistance in Pecan Scab

Fungicide resistance in the pecan scab fungus, *F. effusum* prior to 2008:

- resistance to MBC fungicide benomyl reported in mid-1970s in Georgia (same MOA as thiophanatemethyl)
- significant decrease in sensitivity to DMI fungicides
 1995-2003 associated with poor scab control
- significant shifts in sensitivity to fentin hydroxide
 (TPTH) in 1998, but control failures not documented

Fungicide Sensitivity Monitoring

In 2008:

- A rapid fungicide sensitivity assay was developed to facilitate statewide monitoring efforts and provide growers with timely results
- Samples from a limited number of orchard locations were collected and tested using the new method

In 2014:

- Fungicide sensitivity monitoring was offered as a "free" service to growers in Georgia
- Growers submitted samples for testing and received a report of the results by email

Fungicide Sensitivity Monitoring

2008

33 samples collected from orchards in GA and AL

2014

179 samples received from 38 counties in GA

Fungicides Included in the Sensitivity Assay

FRAC code	Fungicide	Concentration (µg/ml)	
30	Fentin hydroxide (Super Tin, Agri Tin)	30	0
11	Azoxystrobin (Abound, Quadris Top*)	10	0
1	Thiophanate-methyl (Topsin-M)	1	0
U12	Dodine (Elast)	3	0
3	Propiconazole (Orbit, Propimax, etc.)	1	0
3	Tebuconazole (Folicur, Tebuzol, etc.)	1	0

Leaf Scab Samples

50 leaflets per orchard, divided into 3 groups:

Spores collected from 15 lesions per group

Fungicide Sensitivity Monitoring Assay

Spores washed from individual lesions and transferred to fungicide-amended and non-amended (control) medium

Spore Germination (2 days)

50 spores examined, % germination recorded

Relative germination (RGm):

= % germination on fungicide medium % germination on control medium

Micro-Colony Growth (3 days)

Diameters of 10 micro-colonies measured:

Relative growth (RGr):

= mean colony diameter on fungicide medium mean colony diameter on control medium

Results Reported to Grower

Key to interpretation of assay results:

% RG	Level of insensitivity
0	none (sensitive)
1 - 39	low
40-69	medium
70 or more	high

Insensitivity to Fentin Hydroxide (30 µg/ml)

Level of insensitivity

Insensitivity to Thiophanate-methyl (1.0 µg/ml)

Insensitivity to Dodine (3.0 µg/ml)

Insensitivity to Propiconazole (1.0 µg/ml)

Level of insensitivity

Regional Differences in Sensitivity to DMIs

Differences in Sensitivity Among Cultivars

Resistance to Multiple Fungicide Classes

# of different fungicide	2008		2014	
classes to which a sample tested highly insensitive*	# Samples	%	# Samples	%
4	0	0	1	~1
3	0	0	1	~1
2	0	0	17	11
1	4	12	67	43
0	29	88	70	45
Total	33	100	156	100

^{*} Fungicide classes: organotins, DMIs, MBCs, and guanidines Highly insensitive: RGm ≥ 70% or RGr ≥ 70%

Sensitivity to Qol Fungicides

- The rapid assay method is <u>not</u> accurate for azoxystrobin (Qols)
- A PCR-based assay has been developed to detect the genetic mutations that confer resistance to Qols
- 77 isolates tested in 2010; no mutations found
- Need to test more isolates for presence of mutations

What Have We Learned From Monitoring?

- The relative levels of insensitivity to different fungicides and changes over time are consistent with fungicide use patterns
- The greatest shifts in sensitivity have been observed for fentin hydroxide and propiconazole, and to a lesser extent, thiophanate-methyl
- Little change in sensitivity to dodine over the past 6 years
- Evidence suggests existence of multiple resistance in some locations

What Does It Mean for Scab Management?

- Thresholds for "low", "medium" and "high" insensitivity categories are arbitrary and provide an indication of "relative", rather than "absolute" level of insensitivity.
- "High insensitivity" in an orchard does not necessarily mean complete loss of fungicide effectiveness.
- For fentin hydroxide and DMIs, the highest labelled rates may provide effective control; avoid reduced rates, including rates of individual components of mixtures.
- Resistance management is more important than ever!
 This includes <u>non-chemical</u> disease management.

Acknowledgments

- Tim Brenneman
- Jason Brock
- Clive Bock
- Lara Lee Hickman
- Ethan McBrayer
- Auburn Diffie
- Faith Anderson

 The Georgia Agricultural Commodity Commission for Pecans